Photonics Research, 2014, 2 (2): 02000075, Published Online: Nov. 5, 2014   

Integrated photonics in the 21st century Download: 903次

Author Affiliations
1 Laboratory of Photonics and Microwave Engineering, Royal Institute of Technology (KTH), SE-164 40 Kista, Sweden
2 Hewlett-Packard Laboratories, Palo Alto, California 94304, USA
3 Joint Research Center of Photonics of the Royal Institute of Technology (KTH) and Zhejiang University, Zhejiang University, Hangzhou 310058, China
Copy Citation Text

Lars Thylen, Lech Wosinski. Integrated photonics in the 21st century[J]. Photonics Research, 2014, 2(2): 02000075.

References

[1] MooreG. E., “Cramming more components onto integrated circuits,” Electronics38, 114117 (1965).ELECAD0013-5070

[2] The observation made in 1965 by Gordon Moore, cofounder of Intel, that the number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit was invented. Moore predicted that this trend would continue for the foreseeable future. In subsequent years, the pace slowed down a bit, but data density has doubled approximately every 18 months, and this is the current definition of Moore’s law—Webopedia, .

[3] ThylénL.HeS.WosinskiL.DaiD., “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A7, 19611967 (2006).

[4] SmitM. K.van DamC., “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2, 236250 (1996).IJSQEN1077-260X

[5] OkamotoK., “Fundamentals, technology and applications of AWGs,” Proceedings of 24th European Conference on Optical Communication, Madrid, Spain, Sept.20–24, 1998.

[6] ThylénL.HolmstromP.WosinskiL.JaskorzynskaB.NaruseM.KawazoeT.OhtsuM.YanM.FiorentinoM.WestergrenU., “Nanophotonics for low-power switches,” in Optical Fiber Telecommunications VI, KaminowI. P.LiT.WillnerA. E., eds. (Elsevier, 2013).

[7] BonaG.-L.GermanR.OffreinB. J., “SiON high-reffractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev.47, 239249 (2003).IBMJAE0018-8646

[8] LiuL.HanZ.HeS., “Novel surface plasmon waveguide for high integration,” Opt. Express13, 66456650 (2005).OPEXFF1094-4087

[9] BozhevolnyiS. I.VolkovV. S.DevauxE.LaluetJ.-Y.EbbesenT. W., “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508511 (2006).NATUAS0028-0836

[10] HolmströmP.ThylénL.BratkovskyA., “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett.97(7), 073110 (2010).APPLAB0003-6951

[11] BratkovskyA.PonizovskayaE.WangS. Y.HolmstromP.ThylénL.FuY.AgrenH., “A metal-wire/quantum-dot composite metamaterial with negative and compensated optical loss,” Appl. Phys. Lett.93, 193106 (2008).APPLAB0003-6951

[12] AlamM. Z.MeierJ.AitchisonJ. S.MojahediM., “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JThD112.

[13] OultonR. F.SorgerV. J.GenovD. A.PileD. F. P.ZhangX., “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2, 496500 (2008).NPAHBY1749-4885

[14] DaiD.HeS., “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17, 1664616653 (2009).OPEXFF1094-4087

[15] WangZ.WangZ.DaiD.ShiY.SomesfaleanG.HolmstromP.ThylénL.HeS.WosinskiL., “Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.

[16] LouF.WangZ.DaiD.ThylénL.WosinskiL., “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100, 241105 (2012).APPLAB0003-6951

[17] LouF.ThylénL.WosinskiL., “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE8781, 87810X (2013).PSISDG0277-786X

[18] LouF.DaiD.WosinskiL., “Ultracompact polarization beam splitter based on a dielectric–hybrid plasmonic–dielectric coupler,” Opt. Lett.37, 33723374 (2012).OPLEDP0146-9592

[19] LouF.DaiD.ThylénL.WosinskiL., “Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators,” Opt. Express21, 2004120051 (2013).OPEXFF1094-4087

[20] XuQ.AlmeidaV. R.PanepucciR. R.LipsonM., “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett.29, 16261628 (2004).OPLEDP0146-9592

[21] SunR.DongP.FengN.HongC.MichelJ.LipsonM.KimerlingL., “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550  nm,” Opt. Express15, 1796717972 (2007).OPEXFF1094-4087

[22] YanM.ThylénL.QiuM., “Layered metal-dielectric waveguide: subwavelength guidance, leveraged modulation sensitivity in mode index, and reversed mode ordering,” Opt. Express19, 38183824 (2011).OPEXFF1094-4087

[23] ChacinskiM.WestergrenU.StoltzB.ThylénL., “Monolithically integrated DFB-EA for 100  Gb/s Ethernet,” IEEE Electron Device Lett.29, 13121314 (2008).EDLEDZ0741-3106

[24] DebnathK.O’FaolainL.GardesF. Y.SteffanA. G.ReedG. T.KraussT. F., “Cascaded modulator architecture for WDM applications,” Opt. Express20, 2742027428 (2012).OPEXFF1094-4087

[25] OhtsuM., Dressed Photons: Concepts of Light–Matter Fusion Technology (Springer-Verlag, 2014).

[26] KubotaY.NobusadaK., “Exciton–polariton transmission in quantum dot waveguides and a new transmission path due to thermal relaxation,” J. Chem. Phys.134, 044108 (2011).JCPSA60021-9606

[27] HolmströmP.ThylénL., “Electro-optic switch based on near-field-coupled quantum dots,” Opt. Express (submitted).

[28] WangF.ShenY. R., “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett.97, 206806 (2006).PRLTAO0031-9007

[29] ThylénL., “A comparison of optically and electronically controlled optical switches,” Appl. Phys. A113, 249256 (2013).APSFDB0721-7250

Lars Thylen, Lech Wosinski. Integrated photonics in the 21st century[J]. Photonics Research, 2014, 2(2): 02000075.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!