AI Video Guide  
Jiachen Cai 1,2†Shuai Wan 3,4†Bowen Chen 1,2†Jin Li 3,4†[ ... ]Xin Ou 1,2,*
Author Affiliations
Abstract
1 State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
4 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
5 e-mail: wangcl@mail.sim.ac.cn
6 e-mail: chunhua@ustc.edu.cn
Chip-based soliton frequency microcombs combine compact size, broad bandwidth, and high coherence, presenting a promising solution for integrated optical telecommunications, precision sensing, and spectroscopy. Recent progress in ferroelectric thin films, particularly thin-film lithium niobate (LiNbO3) and thin-film lithium tantalate (LiTaO3), has significantly advanced electro-optic (EO) modulation and soliton microcombs generation, leveraging their strong third-order nonlinearity and high Pockels coefficients. However, achieving soliton frequency combs in X-cut ferroelectric materials remains challenging due to the competing effects of thermo-optic and photorefractive phenomena. These issues hinder the simultaneous realization of soliton generation and high-speed EO modulation. Here, following the thermal-regulated carrier behavior and auxiliary-laser-assisted approach, we propose a convenient mechanism to suppress both photorefractive and thermal dragging effects at once, and implement a facile method for soliton formation and its long-term stabilization in integrated X-cut LiTaO3 microresonators for the first time, to the best of our knowledge. The resulting mode-locked states exhibit robust stability against perturbations, enabling new pathways for fully integrated photonic circuits that combine Kerr nonlinearity with high-speed EO functionality.
Photonics Research
2025, 13(7): 1955
AI高清视频导读  
作者单位
摘要
1 中国科学院上海微系统与信息技术研究所,集成电路材料全国重点实验室,上海 200050
2 上海科技大学信息科学与技术学院,上海 201210
3 哈尔滨工业大学(深圳),微纳光电信息系统理论与技术工业和信息化部重点实验室,深圳 518055
4 中国科学院上海光学精密机械研究所,强激光材料重点实验室,上海 201800
5 杭州光学精密机械研究所,杭州 311421
6 西安电子科技大学微电子学院,西安 710071
超宽禁带氧化镓在高功率和射频器件领域显示出巨大发展潜力。然而,氧化镓固有的极低热导率和p型掺杂困难问题限制了其器件性能和结构设计。异质集成是突破单一材料性能极限,变革提升器件性能的关键技术。本文综述了异质外延、机械剥离和离子束剥离转移三种氧化镓异质集成技术的最新研究进展,重点对比分析不同集成技术在材料质量、电学和热学特性及器件性能等方面的优缺点,并针对衬底种类、界面成键方式、过渡层厚度对纵向散热和电子输运的影响进行探讨。同时,本文对当前氧化镓异质集成技术所面临的挑战进行分析,并对氧化镓异质集成技术未来的发展趋势进行展望,旨在唤起国内氧化镓异质集成衬底相关研究,推动氧化镓异质集成器件开发,加快推进氧化镓材料和器件产业化应用。
氧化镓 异质衬底集成 异质外延 机械剥离 离子束剥离转移 热管理 Ga2O3 heterogenous substrate integration heteroepitaxy mechanical exfoliation ion-cutting thermal management 
人工晶体学报
2025, 54(3): 470
AI高清视频导读  
作者单位
摘要
1 哈尔滨工业大学(深圳),微纳光电信息系统理论与技术工业和信息化部重点实验室,深圳 518055
2 中国科学院上海微系统与信息技术研究所,集成电路材料全国重点实验室,上海 200050
3 南京电子器件研究所,微波毫米波单片集成和模块电路重点实验室,南京 211106
氧化镓的低热导率是其功率器件发展的最大瓶颈,使其在高功率密度下产热时面临高效散热的巨大挑战。因此,开发全新的热管理和封装技术迫在眉睫。通过材料、器件和封装多层面的热管理来缓解自热引发的性能与可靠性问题成为关键。本文综述了超宽带隙(UWBG)氧化镓(β-Ga2O3)功率器件的热管理,针对相关挑战、潜在解决方案和研究机遇提出了观点。论文首先介绍了超宽带隙氧化镓的特性及其在电子器件领域的重要性,详细阐述了热管理在氧化镓器件中的关键意义。随后,从不同的热管理技术方面,包括衬底相关技术和结侧热管理技术等进行深入探讨,并分析了热管理对氧化镓器件电学性能的影响。最后,对氧化镓器件热管理的未来发展趋势进行展望,提出了“材料-器件-封装”电热协同设计、近结异质集成和新型外部封装等多维度的热管理策略,旨在唤起相关研究,加快超宽带隙氧化镓功率器件的开发和产业化进程。
热管理 超宽带隙 氧化镓 材料-器件-封装 结侧散热 高导热率衬底集成 电热协同设计 thermal management ultrawide bandgap (UWBG) gallium oxide (β -Ga2O3) material-device-packaging junction-side heat dissipation integration of high thermal conductivity substrate electrothermal co-design 
人工晶体学报
2025, 54(2): 290
AI Video Guide  
Author Affiliations
Abstract
1 State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Microelectronics, Shanghai University, Shanghai 201800, China
4 Shanghai Industrial μTechnology Research Institute, Shanghai 201800, China
5 Shanghai Mingkun Semiconductor Co., Ltd., Shanghai 201800, China
6 e-mail: ouxin@mail.sim.ac.cn
7 e-mail: yan.cai@mail.sim.ac.cn
This paper presents the design, fabrication, and characterization of a high-performance heterogeneous silicon on insulator (SOI)/thin film lithium niobate (TFLN) electro-optical modulator based on wafer-scale direct bonding followed by ion-cut technology. The SOI wafer has been processed by an 8 inch standard fabrication line and cut into 6 inch for direct bonding with TFLN. The hybrid SOI/LN electro-optical modulator operated at the wavelength of 1.55 μm is composed of couplers on the Si layer and a Mach–Zehnder interferometer (MZI) structure on the LN layer. The fabricated device exhibits a stable value of the product of half-wave voltage and length (VπL) of around 2.9 V·cm. It shows a good low-frequency electro-optic response flatness and supports 96 Gbit/s data transmission for the NRZ format and 192 Gbit/s data transmission for the PAM-4 format.
Photonics Research
2025, 13(1): 106
 
王成立 1,2蔡佳辰 1,2周李平 1,2伊艾伦 1[ ... ]欧欣 1,2,*
作者单位
摘要
1 中国科学院上海微系统与信息技术研究所集成电路材料全国重点实验室,上海 200050
2 中国科学院大学材料科学与光电技术学院,北京 100049
凭借优异的材料与光学特性,第三代半导体——碳化硅材料在集成光子学领域发展迅速并获得广泛关注。当前碳化硅材料正逐渐发展为可与CMOS工艺兼容的优异光子学材料平台。受益于高非线性系数和低光学损耗特性,碳化硅材料已广泛应用于多种片上非线性光学效应的实现,如高效二次谐波、快速电光调制和孤子光学频率梳产生等。同时与金刚石类似,碳化硅材料具有性能优异的二能级固体自旋色心,基于碳化硅色心与谐振腔的腔量子电动力学效应在近年来也得到广泛研究。综合近几年来国内外在碳化硅光子学上的研究现状,介绍碳化硅在集成非线性光学和集成量子光学领域中的最新研究进展,并就碳化硅光子学的未来发展趋势进行展望和讨论。
光子器件 碳化硅 非线性光子学 量子光学 集成光路 
光学学报
2023, 43(16): 1623017
Author Affiliations
Abstract
1 School of Microelectronics, Xidian University, Xi’an 710071, China
2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
3 Suzhou institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Journal of Semiconductors
2023, 44(6): 060301
Liping Zhou 1,2Chengli Wang 1,2Ailun Yi 1,3Chen Shen 1[ ... ]Xin Ou 1,2,**
Author Affiliations
Abstract
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 XOI Technology Co., Ltd., Shanghai 201899, China
The 4H-silicon carbide on insulator (4H-SiCOI) has recently emerged as an attractive material platform for integrated photonics due to its excellent quantum and nonlinear optical properties. Here, we experimentally realize one-dimensional photonic crystal nanobeam cavities on the ion-cutting 4H-SiCOI platform. The cavities exhibit quality factors up to 6.1×103 and mode volumes down to 0.63 × (λ/n)3 in the visible and near-infrared wavelength range. Moreover, by changing the excitation laser power, the fundamental transverse-electric mode can be dynamically tuned by 0.6 nm with a tuning rate of 33.5 pm/mW. The demonstrated devices offer the promise of an appealing microcavity system for interfacing the optically addressable spin defects in 4H-SiC.
photonic crystal cavities silicon carbide thermo-optic effect 
Chinese Optics Letters
2022, 20(3): 031302
 
骆钧尧 1,2,4郭智 1,2,*黄浩 3,4,5,**欧欣 3张祥志 1,2
作者单位
摘要
1 中国科学院上海应用物理研究所, 上海 201800
2 中国科学院上海高等研究院上海光源科学中心, 上海 201204
3 中国科学院上海微系统与信息技术研究所, 上海 200050
4 中国科学院大学, 北京 100049
5 上海科技大学, 上海 201210

多层膜光栅具有优异的衍射性能,能够成为同步辐射软X射线波段重要的色散元件。为了测量多层膜光栅的衍射效率,在上海同步辐射光源上设计并搭建了小型化的衍射效率检测装置,实现在现有谱学显微实验腔体中对光栅衍射效率的快速检测。在480~730 eV的光子能量范围内,测得多层膜光栅的0级衍射效率峰值为1.11%,+1级次的衍射效率峰值为0.52%,并分析影响多层膜光栅衍射效率的因素。使用微分理论数值计算多层膜光栅的衍射效率,验证了实验方案的正确性。衍射效率的测量和模拟计算为多层膜光栅的制备和应用提供了重要依据。

衍射 X射线光学 同步辐射 多层膜光栅 衍射效率 
光学学报
2021, 41(14): 1405001
Guang-Zhao Xu 1,2,3†Wei-Jun Zhang 1,2,3,4,*†Li-Xing You 1,2,3,5,*Jia-Min Xiong 1,2,3[ ... ]Xiao-Ming Xie 1,3
Author Affiliations
Abstract
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences (CAS), Shanghai 200050, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 CAS Center for Excellence in Superconducting Electronics, Shanghai 200050, China
4 e-mail: zhangweijun@mail.sim.ac.cn
5 e-mail: lxyou@mail.sim.ac.cn
Generally, a superconducting nanowire single-photon detector (SNSPD) is composed of wires with a typical width of 100 nm. Recent studies have found that superconducting strips with a micrometer-scale width can also detect single photons. Compared with the SNSPD covering the same area, the superconducting microstrip single-photon detector (SMSPD) has smaller kinetic inductance, higher working current, and lower requirements in fabrication accuracy, providing potential applications in the development of ultralarge active area detectors. However, the study of SMSPD is still in its infancy, and the realization of its high-performance and practical use remains an open question. This study demonstrates a NbN SMSPD with a nearly saturated system detection efficiency (SDE) of 92.2% at a dark count rate of 200 cps, a polarization sensitivity of 1.03, and a minimum timing jitter of 48 ps at the telecom wavelength of 1550 nm when coupled with a single-mode fiber and operated at 0.84 K. Furthermore, the detector’s SDE is over 70% when operated at a 2.1 K closed-cycle cryocooler.
Photonics Research
2021, 9(6): 06000958

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!