光学 精密工程, 2016, 24 (5): 1148, 网络出版: 2016-06-15   

航空遥感惯性稳定平台LuGre摩擦参数的分步辨识

Sub-step identification of LuGre friction parameters of inertially stabilized platform for airborne remote sensing
作者单位
国防科学技术大学 航天科学与工程学院, 湖南 长沙 410073
摘要
由于航空遥感惯性稳定平台框架角运动受限, 本文提出了基于LuGre摩擦模型进行参数初步和精确辨识的方法以进一步提高其控制精度。从数字控制系统出发, 构建了摩擦参数辨识系统, 把摩擦参数辨识问题转化为曲线拟合问题。通过限定输入信号幅值和频率, 解决了框架角运动受限导致摩擦参数辨识困难的问题。结合数字控制系统特性, 优先辨识摩擦线性项参数; 根据摩擦静态和动态特性, 提出分步夹逼和分步搜索法依次辨识剩余参数, 完成初步辨识。然后代入初步辨识结果, 用遗传算法完成摩擦参数的精确辨识。仿真结果表明: 摩擦参数初步辨识误差小于5%, 精确辨识误差小于0.7%; 用辨识出的摩擦参数构建摩擦补偿器, 系统对基座低频角运动干扰的抑制能力提高了4倍。最后, 基于某原理样机开展了摩擦参数辨识和补偿实验, 结果表明控制精度提高了1倍, 证实了提出的辨识方法的有效性和工程实用意义。
Abstract
A preliminary and accurate LuGre friction parameter identification method was put forward to improve the control precision of an inertially stabilized platform for airborne remote sensing due to its limited gimbal angular motion. From the digital control system, the parameter identification system of a friction model was constructed to transform the identification problem into that of a curve fitting. By limiting the amplitude and frequency of a input signal, the difficulties of parameter identification of friction model caused by the limited gimbal angular motion were solved. On the basis of the digital control system, the linear friction parameter was preferentially identified. Then, according to the stationary and dynamic characteristics of LuGre model, a sub-step bi-directional approach and a sub-step searching method were proposed to identify the remaining friction parameters in turn, and the preliminary identification was completed. Furthermore, the accurate identification was achieved by making full use of preliminary identification results and genetic algorithm. Simulation results indicate that parameter errors of preliminary identification are less than 5% while that of accurate identification are down to 0.7%. After adding a friction compensator designed by identified friction parameters, the ability to suppress the interference caused by low frequency angular motion of a base is improved by 4 times. An experiment for the identification and compensation of friction parameters based on a principle prototype, and the results show that the control precision of system is double that of the traditional one, which verified that the validity of identification method proposed and its engineering meanings.
参考文献

[1] HILKERT J M. Inertially stabilized platform technology concepts and principles [J]. IEEE Control Systems Magazine, 2008: 21-46.

[2] MICHAEL K M. Inertially stabilized platforms for optical imaging systems [J]. IEEE Control Systems Magazine, 2008(2): 47-63.

[3] ZHOU X Y, GONG G H, LI J P. Decoupling control for a three-axis inertially stabilized platform used for aerial remote sensing [J]. Transactions of the Institute of Measurement & Control, 2015, 37(9): 1135-1145.

[4] LIN Z CH, LIU K, ZHANG W. Inertially stabilized platform for airborne remote sensing using magnetic bearings [J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 288-301.

[5] KARL JOHAN STRM, CARLOS CANUDAS-DE-WIT.Revisiting the LuGre friction model [J]. IEEE Control Systems Magazine, 2008(12): 101-114.

[6] 孙高, 朱明超, 贾宏光, 等.摩擦自适应补偿在导引头稳定平台控制系统中的应用[J]. 红外与激光工程, 2013, 42(5): 1316-1321.

    SUN G, ZHU M CH, JIA H G, et al.. Adaptive friction compensation in seeker stabilized platform servo control system [J]. Infrared and Laser Engineering, 2013, 42(5): 1316-1321.(in chainese)

[7] 刘强, 尔联洁, 刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J]. 系统工程与电子技术, 2002(24): 45-50.

    LIU Q, ER L J, LIU J K. Overview of characteristics, modeling and compensation of nonlinear friction in servo systems [J]. Systems Engineering and Electronics, 2002(24): 45-50. (in Chinese)

[8] DOWSON D. History of Tribology [M]. London: Longman Ltd, 1966.

[9] HERSEY M D. Theory and Research in Lubrification [M].New York: John Wily, 1966.

[10] KARNOPP D. Computer simulation of stick-slip friction in mechanical dynamic systems [J]. Journals of Dynamic Systems, Measurement and Control, 1985, 107: 100-103.

[11] CANUDAS DE WIT C A. New model for control of systems with friction [J]. IEEE Tran. On Automatic Control, 1995, 40(3): 419-425.

[12] Y S, GAO H L, FEI X. Practical friction models and friction compensation in high-precision electro-hydraulic servo force control system [J]. Instrumentation Science & Technology, 2014, 42(2): 184-199.

[13] 于伟, 马佳光, 李锦英. 基于LuGre模型实现精密伺服转台摩擦参数辨识及补偿[J]. 光学 精密工程, 2011, 19(11): 2736-2743.

    YU W, MA J G, LI J Y. Friction parameter identification and friction compensation for precision servo turning table [J]. Opt. Precision Eng., 2011, 19(11): 2736-2743. (in Chinese)

[14] 周向阳, 刘 炜. 航空遥感惯性稳定平台摩擦参数辨识[J]. 中国惯性技术学报, 2013, 21(6): 710-714.

    ZHOU X Y, LIU W. Parameter identification of friction model on inertially stabilized platform for aerial remote sensing application [J]. Journal of Chinese Inertial Technology, 2013, 21(6): 710-714. (in Chinese)

[15] 梁青, 张剑, 王永. 基于遗传算法的伺服系统摩擦模型参数辨识[J]. 仪表技术, 2011(6): 34-36.

    LIANG Q, ZHANG J, WANG Y, The friction model parameters identification of servo system based on genetic algorithm [J].Instrumentation Technology, 2011(6): 34-36. (in Chinese)

[16] 郭彦青, 付永领, 张朋. 一种新型LuGre摩擦模型参数辨识方法[J]. 机床与液压, 2015, 43(1): 149-153.

    GUO Y Q, FU Y L, ZHANG P. A novel parameters identification method for LuGre friction model [J]. Machine Tool & Hydraulics, 2015, 43(1): 149-153. (in Chinese)

[17] 廖洪波, 范世珣, 黑墨, 等. 光电稳定平台伺服系统动力学建模与参数辨识[J]. 光学 精密工程, 2015, 23(2): 477-483.

    LIAO H B, FAN SH X, HEI M, et al.. Modeling and parameter identification for electro-optical stabilized platform servo systems [J]. Opt. Precision Eng., 2015, 23(2): 477-483. (in Chinese)

[18] 李树胜, 钟麦英. 基于PID的航空遥感三轴惯性稳定平台控制系统设计[J]. 吉林大学学报(工学版), 2011, 41(增): 275-279.

    LI SH SH, ZONG M Y. Design of control system based on PID of three-axis inertially stabilized platform for airborne remote sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2011,41(Supp.): 275-279. (in Chinese)

[19] 朱明超, 刘慧, 张鑫, 等. 惯性稳定平台自适应前馈控制[J]. 光学 精密工程, 2015, 23(1): 141-147.

    ZHU M CH, LIU H, ZHANG X, et al.. Adaptive feed-forward control for inertially stabilized platform [J]. Opt. Precision Eng., 2015, 23(1): 141-147. (in Chinese)

[20] 房建成, 戚自辉, 钟麦英. 航空遥感用三轴惯性稳定平台不平衡力矩前馈补偿方法[J]. 中国惯性技术学报, 2010, 18(1): 38-43.

    FANG J CH, QI Z H, ZHONG M Y. Feedforward compensation method for three axes inertially stabilized platform imbalance torque [J]. Journal of Chinese Inertial Technology, 2010, 18(1): 38-43. (in Chinese)

[21] 庞新良, 范大鹏, 滕旭东, 等. 数字式机载光电伺服系统的实现[J]. 光电工程, 2007, 34(3): 10-15.

    PANG X L, FAN D P, TENG X D, et al.. Realization of digital airborne opto-electronic servo-system [J]. Opto-Electronic Engineering, 2007, 34(3): 10-15. (in Chinese)

[22] 张新勇, 王合龙, 刘昇.机载光电稳定平台的模型辨识研究[J]. 电光与控制, 2014, 21(3): 62-71.

    ZHANG X Y, WANG H L, LIU SH. Study on model identification of airborne electro-optical stabilized platform [J]. Electronics Optics & Control, 2014, 21(3): 62-71. (in Chinese)

曾德林, 肖凯, 林竹翀, 张立. 航空遥感惯性稳定平台LuGre摩擦参数的分步辨识[J]. 光学 精密工程, 2016, 24(5): 1148. ZENG De-lin, XIAO Kai, LIN Zhu-chong, ZHANG Li. Sub-step identification of LuGre friction parameters of inertially stabilized platform for airborne remote sensing[J]. Optics and Precision Engineering, 2016, 24(5): 1148.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!