量子光学学报, 2019, 25 (1): 55, 网络出版: 2019-04-05  

CF4在外电场作用下分子结构及激发特性研究

Study on Molecular Structure and Excitation Properties of CF4 under Electric Field
作者单位
三峡大学 电气与新能源学院,宜昌 443002
摘要
采用密度泛函B3LYP方法在6-311++G基组下优化基态CF4分子,计算出CF4分子键长、偶极距、Mulliken电荷布居分布、分子前线轨道能量和红外光谱等数据,并且在此基础上采用杂化CIS方法计算CF4分子前9个激发态,得到分子激发能、波长和振子强度。研究得出随着电场强度的增加(电场范围在-0.04~0.04a.u.),CF4分子F2—C1键长随着电场强度增加而增大,其余键长减小,分子偶极距先减小后增加,C1电荷布居数先减小后增大,F2电荷布居数线性减小,F3、F4和F5电荷布居数线性增大,分子能隙逐渐减小,在外电场作用下CF4分子结构对称性破坏,红外光谱吸收峰数量增多,吸收峰吸收强度发生不同改变。分子前9个激发态受电场影响明显,激发能随着电场的增加大致呈现先增大后减小的趋势,激发态波长基本为先发生蓝移现象,后呈现红移现象,振子强度变化剧烈,为从光谱方面研究激发态做出理论计算。
Abstract
The ground-state CF4 molecule was optimized using a density functional theory/B3LYP method in the 6-311++G basis set.The bond length, dipole moment, Mulliken charge population distribution, molecular frontier orbital energy and infrared were calculated.Spectral and other data, and based on this hybrid CIS method was used to calculate the first 9 excited states of CF4 molecule, and the molecular excitation energy, wavelength and oscillator strength were obtained.The study shows that as the electric field intensity increases (electric field in the range of -0.04-0.04 a.u.), the F2—C1 bond length of the CF4 molecule increases, and the remaining bond length decreases, and the dipole moment of the molecule decreases first.With the increase, the number of C1 charge population decreases first and then increases.The population of F2 charge population decreases linearly.The population of F3, F4 and F5 charge population increases linearly, and the molecular energy gap decreases.CF4 molecular structure under external electric field Symmetry is destroyed, the number of infrared absorption peaks increases, and the absorption intensity of absorption peaks changes.The first 9 excited states of the molecule are affected by the electric field.The excitation energy increases with the increase of the electric field, and then increases first and then decreases.The excited wavelength is basically a phenomenon of blue shift, followed by a phenomenon of red shift, and intense vibration of the oscillator,to make theoretical calculations for studying excited states from the spectrum.
参考文献

[1] David Edelson,Daniel L Flamm.Computer Simulation of a CF4 Plasma Ething Silicon[J].Journal of Applied Physics,1984,56(5):1522-1531.DOI:10.1063/1.334108.

[2] Mogab C J,Adams A C,Flamm D L.Plasma Ething of Si amd SiO2-The Effect of Oxygen Addition to CF4 Plasma[J].Journal of Applied Physics,1991,49(7):3796-3803.DOI:10.1063/1.325382.

[3] Hyunho Doh,Junghun Kim,Kiwoong Whang.Effect of Hydrogen Addition Fluorocarbon Gases(CF4,C4F8) in Selective SiO2/Si Ething by Electron Cyclotron Resonance Plasma[J].Journal of Vacuum Science and Technology,1996,14(3):1088-1091.DOI:10.1116/1.580138.

[4] 赵虎,李兴文,贾申利,等.一个大气压下50%SF6-50%CF4混合气体电击穿特性的研究[J].中国电机工程学报,2013,33(19):200-207.DOI:10.13334/j.0258-8013.pcsee.2013.19.024.

[5] Middleton R L,Eng P.Clod-weather Application of Gas Mixture(SF6/N2,SF6/CF4) Circuit Breakers: a Utility user’s perspective[Z].2014:1-10.

[6] 张晓星,田双双,肖淞,等.SF6替代气体研究现状综述[J].电工技术学报,2018,33(12):2883-2893.DOI:10.19595/j.cnki.1000-6753.tces.161253.

[7] 林林,陈庆国,程嵩,等.基于密度泛函理论的SF6潜在可替代性气体介电性能分析[J].2018,33(18):4382-4388.DOI:10.19595/j.cnki.1000-6753.tces.171092.

[8] 田雨,张晗,赵虎.SF6/CF4混合气体的饱和蒸汽压与绝缘特性设计[J].高电压技术,2017,43(3):765-771.DOI:10.13336/j.1003-6520.hve.20170303010.

[9] 李兴文,朱凯,郭泽,等.SF6-CF4混合气体电弧开断特性的实验研究[J].中国电机工程学报,2017,37(11):3315-3322.DOI:10.13334/j.0258-8013.pcsee.162207.

    LI Xingwen,ZHU Kai,GUO Ze,et al.Experimental Stydy on Arc Interruption Characteristics of SF6 and Its Mixture With CF4[J].Proceeding of CESS,2017,37(11):3315-3322.DOI:10.13334/j.0258-8013.pcsee.162207.

[10] 吴学科,唐延林,等.外电场作用下SF6分子结构与红外光谱[J].原子与分子物理学报,2016,33(3):385-391.DOI: 103969/j.issn.1000-0364.2016.06.002.

[11] Andreas Schutze,James Y Jeong,Steven E Babayan,et al.The Atmopheric-Pressure Plasma Jet:A Review Comparison to Other Plasma Sources[J].IEEE Transactions on Plasma Science,1998,26(6):1685-1694.DOI:10.1109/27.747887.

[12] Oehrlein G S,ZHANG Y,Vender D,et al.Fluorocarbon Highdensity Plasma Ⅰ Fluorocarbon film Deposition and Etching Using CF4 and CHF3[J].Journal of Vacuum Science and Technology,1994,12(2):323-332.DOI:10.1116/1.578876.

[13] Oehrlein G S,Zhang Y,Vender D,et al.Fluorocarbon Highdensity Plasma Ⅱ Silicon Dioxide and Silicon Etching Using CF4 and CHF3[J].Journal of Vacuum Science and Technology,1994,12(4):333-344.DOI: 10.1116/1.578877.

[14] Plank N O V,Jiang Liudi,Cheung R.Fluorination of Carbon Nanotubes in CF4 Plasma[J].Applicated Physics Letters,2003,83(12):2426R2428.DOI:10.1063/1.1611621.

[15] Mauer J L,Logan J S,Zielinski L B,et al.Mechanism of Silicon Etching by a CF4 Plasma[J].Journal of Vacuum Science & Technology,1978,15(5):1734-1738.DOI:10.1116/1.569836.

[16] Tserepi A,Schwarzenbach W,Derouard J,et al.Kinetics of Atoms and Fluorocarbon Radicals Studied by Threshold Ionization Mass Spectrometry in a Micrawave CF4 Plasma[J].Journal of Vacuum Science and Technology,1997,15(6):3120-3126.DOI:10.1116/1.580855.

[17] 黄松,辛煜,宁兆元.使用发射挂不挂普对感应耦合CF4/CH4等离子体重C2基团形成机理的研究[J].物理学报,2005,54(4):1654-1657.

[18] 黄多辉,王藩候,万明杰,等.外场下SnS分子结构及其特性[J].物理学报,2013,62(1):0131041-0131046.DOI:10.7498/aps.62.013104.

[19] 凌志钢,唐延林,李涛,等.外电场下二氧化锆的分子结构及其特性[J].物理学报,2014,63(2):0231021-0231025.DOI:10.7498/aps.63.023102.

[20] 杜建宾,武德起,唐延林,等.外场作用下邻苯二甲酸二丁酯的分子结构和光谱研究[J].物理学报,2015,64(7):0731011-0731018.DOI:10.7498/aps.64.073101.

[21] Hoffman C W W,Livingston R L.The Molecular Structure of Carbon Tetrofluoride[J].The Journal of Chemical Physics,1953,21:565-566.DOI:10.1063/1.1698958.

[22] Woltz P J H,Nielsen A H.The Infrared Spectrum of CF4 and GeF4[J].The Journal of Chenical Physics,1951,20(2):307A.H.312.DOI:10.1063/1.1700399.

[23] Coox G R,Ching B K.Photoionization and Absorption Cross Sections and Fluorescence of CF4[J].The Journal of Chemical Physics,1965,43(5):1794-1797.DOI:10.1063/1.1697011.

李亚莎, 刘国成, 刘志鹏, 谢云龙, 徐程. CF4在外电场作用下分子结构及激发特性研究[J]. 量子光学学报, 2019, 25(1): 55. LI Ya-sha, LIU Guo-cheng, LIU Zhi-peng, XIE Yun-long, XU Cheng. Study on Molecular Structure and Excitation Properties of CF4 under Electric Field[J]. Acta Sinica Quantum Optica, 2019, 25(1): 55.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!