红外与激光工程, 2018, 47 (12): 1206009, 网络出版: 2019-01-10   

飞秒激光双光子聚合加工微纳结构

Micro/nano structures fabricated by two-photon photopolymerization of femtosecond laser
作者单位
1 青岛理工大学 机械工程学院, 山东 青岛 266520
2 青岛理工大学 计算机工程学院, 山东 青岛 266520
摘要
针对微/纳机电系统(MEMS/NEMS)零部件加工制造难题, 研究具有亚衍射极限空间分辨率的飞秒激光双光子聚合加工方法, 搭建钛蓝宝石飞秒激光微纳加工系统, 对液态聚合物材料进行飞秒激光双光子聚合加工工艺试验研究。结果表明: 随着激光功率的降低, 单个固化点的尺寸减小, 加工分辨率提高; 扫描步距减小, 所加工工件的表面粗糙度数值减小, 但加工效率降低。基于CAD软件设计出微米墙和纳米线构成的三维微纳结构, 利用飞秒激光双光子聚合加工得到该三维微纳结构实物, 通过优化工艺参数加工出直径小于100 nm的纳米线, 从而证明飞秒激光双光子聚合加工方法为微/纳器件的制造提供了一种有效方法。
Abstract
It is hard to fabricate parts of Micro/Nano-Electro-Mechanical Systems (MEMS/NEMS). To solve this problem, the method of two-photon photopolymerization of femtosecond laser which had subdiffraction-limited spatial resolution was researched. Micro/nano fabrication system of Ti-sapphire femtosecond laser was set up. Process experiments of femtosecond laser two-photon photopolymerization were carried out using the material of liquid polymer. The experimental results indicate that the size of single solidification point reduces and the fabrication resolution improves with the reduction of laser power. The surface roughness value of the fabricated parts decreases, and the fabrication efficiency reduces with the scanning step reducing. 3D micro/nano structures composed of micro walls and nano wires was designed with CAD software and fabricated with two-photon photopolymerization of femtosecond laser. Nano wire whose diameter was smaller than 100 nm was fabricated after optimizing the process parameters. It is verified that two-photon photopolymerization of femtosecond laser provides an efficient method for micro/nano device.
参考文献

[1] Qi Litao. Different wavelength solid-state laser ablation of silicon wafer in vacuum[J]. Chinese Optics, 2014, 7(3): 443-448. (in Chinese)

[2] Fan Peixun, Zhong Minlin. Progress on ultrafast laser fabricating metal surface micro-nano antireflection structures[J]. Infrared and Laser Engineering, 2016, 45(6): 0621001. (in Chinese)

[3] Cheng Ping, Wei Di, Wu Benke, et al. Femtosecond laser prcison machining of biodegradable hear stent[J]. Optics and Precision Engineering, 2014, 22(1): 63-68. (in Chinese)

[4] Dong Zhiwei, Zhang Weibin, Zheng Liwei, et al. Processing of diamond applying femtosecond and nanosecond laser pulses[J]. Infrared and Laser Engineering, 2015, 44(3): 893-896. (in Chinese)

[5] Jiang Shujuan, Wang Ke. Application of Kalman filter in laser molten pool width detection[J]. Infrared and Laser Engineering, 2016, 45(12): 1206003. (in Chinese)

[6] Li Rui, Yang Xiaojun, Zhao Wei, et al. Effect of femtosecond laser micromachining on the roughness of cladding sidewalls[J]. Infrared and Laser Engineering, 2015, 44(11): 3244-3249. (in Chinese)

[7] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional micro devices[J]. Nature, 2001, 412: 697-698.

[8] Tomokazu Tanaka. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Applied Physics Letters, 2002, 80(2): 312-314.

[9] Wu Enshinn, Strickler James H, Harrell W R, et al. Two-photon lithography for microelectronic application [J]. Proc SPIE, 1992, 1674: 776-782.

[10] Satoshi Kawata, Sun Hongbo, Tomokazu Tanaka, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

[11] Péter Galajda, Pál Ormos. Complex micromachines produced and driven by light[J]. Applied Physics Letters, 2001, 78(2): 249-251.

[12] Shoji Maruo, Hiroyuki Inoue. Optically driven micropμmp produced by three-dimensional two-photon micro- fabrication[J]. Applied Physics Letters, 2006, 89: 144101.

[13] Dong Xianzi, Zhao Zhensheng, Duan Xuanming. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing[J]. Applied Physics Letters, 2007, 91: 124103.

[14] Zhou Ming, Liu Lipeng, Dai Qixun, et al. Fabrication of micro-structures with two-photon absorption induced by femtosecond laser[J]. Chinese Journal of Lasers, 2005, 32(10): 1342-1346. (in Chinese)

[15] Sun Shufeng, Wang Pingping, Xue Wei. Fabrication technique research of micro gear based on two-photon of femtosecond laser[J]. Journal of Mechanical Engineering, 2011, 47(23): 193-198. (in Chinese)

[16] Sun Shufeng. Fabrication technology of involute micro gear based on two-photon of femtosecond laser[J]. Applied Mechanics and Materials, 2011, 44-47: 670-674.

[17] Bieda M, Bouchard F, Lasagni A F. Two-photon polymerization of a branchedhollow fiber structure with predefined circular pores[J]. Photochem Photobiol A: Chem, 2016, 319-320: 1-7.

[18] Chaudhary R P, Ummethala G, Jaiswal A, et al. One-step subwavelength patterning of plasmonic gratings in metal-polymercomposites[J]. RSC Adv, 2016, 6: 113457-113462.

[19] Xing J F, Zheng M L, Duan X M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery[J]. Chem Soc Rev, 2015, 44: 5031-5039.

[20] Su Yahui, Fan Zhenzhu, Wang Chaowei, et al. Fabrication of anisotropic and hierarchical structures using femtosecond laser printing capillary force assisted self-assembly[J]. Optics and Precision Engineering, 2017, 25(8): 2057-2063. (in Chinese)

[21] Robert W Boyd. Nonlinear Optics[M]. Boston: Academic Press, 1992: 16.

孙树峰, 王萍萍. 飞秒激光双光子聚合加工微纳结构[J]. 红外与激光工程, 2018, 47(12): 1206009. Sun Shufeng, Wang Pingping. Micro/nano structures fabricated by two-photon photopolymerization of femtosecond laser[J]. Infrared and Laser Engineering, 2018, 47(12): 1206009.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!