红外与激光工程, 2017, 46 (2): 0220002, 网络出版: 2017-03-31   

使用梯度折射率液晶微透镜阵列的光场成像

Light field imaging with a gradient index liquid crystal microlens array
作者单位
1 华中科技大学 自动化学院, 湖北 武汉 430074
2 石家庄铁道大学 信息科学与技术学院, 河北 石家庄 050043
摘要
光场成像可以获取场景的三维信息。通过在主透镜和图像传感器之间插入一个微透镜阵列, 不仅可以记录光线的辐射度, 还记录了光线入射的方向。提出了使用梯度折射率液晶微透镜阵列进行光场成像的方法。该阵列基于向列相液晶材料, 利用其各向异性和双折射的特点, 通过紫外光刻技术和湿法刻蚀技术制作, 具有圆孔阵列图案。在该阵列的上下电极之间加载一个交流电压信号后, 每个微透镜可以有效会聚入射光, 搭建了测试系统来测试该阵列的聚焦特性和焦距。将该阵列与一个主透镜和一片图像传感器耦合得到一个光场成像相机, 并使用该相机采集了图像。
Abstract
Light field imaging is an imaging method which can acquire the three-dimensional information of the scene. By inserting a microlens array between the main lens and the imaging sensor, it records both the radiance and the direction of the incident rays. Light field imaging using a gradient index liquid crystal microlens array (LCMLA) was proposed. Based on nematic liquid crystal materials for their anisotropy and birefringence, the LCMLA with a pattern of a circular-hole array was fabricated using ultraviolet lithography and wet etching. When an alternate voltage signal was applied between the two electrodes of the LCMLA, each microlens can converge incident rays effectively. An experimental system was set up to verify its focusing performance and measure its focal length. Then the LCMLA was assembled with a main lens and an imaging sensor to construct a light field imaging camera. Raw images were taken using the camera based on LCMLA.
参考文献

[1] Lippmann G. Epreuves reversibles donnant la sensation du relief[J]. J Phys Theor Appl, 1908, 7(1): 821-825.

[2] Adelson E H, Wang J Y. Single lens stereo with a plenoptic camera[J]. IEEE Trans Pattern Anal Mach Intell, 1992, 14(2): 99-106.

[3] Ng R, Levoy M, Brédif M, et al. Light field photography with a hand-held plenoptic camera[J]. Stanford Tech Rep, 2005, 2: 1-11.

[4] Lumsdaine A, Georgiev T. The focused plenoptic camera[C]//Proceddings of IEEE International Conference on Computational Photography, 2009: 1-8.

[5] Perwass C, Wietzke L. Single lens 3D-camera with extended depth-of-field[C]//Proc SPIE, 2012, 8291: 829108.

[6] Liu Lili, Huang Tao, Cai Min, et al. Retinal imaging system with large field of view based on liquid crystal adaptive optics[J]. Optics and Precision Engineering, 2013, 21(2): 301-307.(in Chinese)

[7] Wei Peifeng, Liu Xinyue, Lin Xudong, et al. Temporal simulation of atmospheric turbulence during adaptive optics system testing[J]. Chinese Optics, 2013, 6(6): 371-377. (in Chinese)

[8] Huang Chong, Ouyang Yandong. Liquid crystal grating with variable and electrically controlled constants[J]. Chinese Optics, 2012, 5(3): 296-301. (in Chinese)

[9] Zhang Ying, Zhao Haibo. Liquid crystal variable retarder attached with compensator[J]. Optics and Precision Engineering, 2009, 17(8): 1798-1803. (in Chinese)

[10] Sato S. Liquid-crystal lens-cells with variable focal length[J]. Jpn J Appl Phys, 1979, 18(9): 1679-1684.

[11] Nose T, Sato S. A liquid crystal microlens obtained with a non-uniform electric field[J]. Liq Cryst, 1989, 5(5): 1425-1433.

[12] Kao Y Y, Chao P C P, Hsueh C W. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths[J]. Opt Express, 2010, 18(18): 18506-18518.

[13] Fan Y H, Ren H, Liang X, et al. Liquid crystal microlens arrays with switchable positive and negative focal lengths[J]. J Disp Technol, 2005, 1(1): 151-156.

[14] Kang S, Qing T, Sang H, et al. Ommatidia structure based on double layers of liquid crystal microlens array[J]. Appl Opt, 2013, 52(33): 7912-7918.

[15] Lei Yu, Tong Qing, Zhang Xinyu, et al. Plenoptic camera based on a liquid crystal microlens array[C]//Proc SPIE, 2015, 9579: 95790T.

[16] Tong Qing, Rong Xing, Zhang Xinyu, et al. Large-area arrayed liquid crystal device for measuring and regulating polarization state of incident light[J]. Infrared and Laser Engineering, 2014, 43(2): 474-478. (in Chinese)

[17] Georgiev T, Lumsdaine A. Focused plenoptic camera and rendering[J]. J of Electron Imaging, 2010, 19(2): 021106.

[18] Lumsdaine A, Lin L, Willcock J, et al. Fourier analysis of the focused plenoptic camera[C]//Proc SPIE, 2013, 8667: 86671M.

[19] Hahne C, Aggoun A, Haxha S, et al. Light field geometry of a standard plenoptic camera[J]. Opt Express, 2014, 22(22): 26659-26673.

[20] Zhang W, Guo X, You S, et al. Computer simulation for hybrid plenoptic camera super-resolution refocusing with focused and unfocused mode[J]. Infrared and Laser Engineering, 2015, 44(11): 3384-3392. (in Chinese)

雷宇, 佟庆, 张新宇. 使用梯度折射率液晶微透镜阵列的光场成像[J]. 红外与激光工程, 2017, 46(2): 0220002. Lei Yu, Tong Qing, Zhang Xinyu. Light field imaging with a gradient index liquid crystal microlens array[J]. Infrared and Laser Engineering, 2017, 46(2): 0220002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!