红外与激光工程, 2018, 47 (10): 1020004, 网络出版: 2018-11-25  

采用SiPM探测三硝基甲苯的时间分辨拉曼光谱

Time-resolved Raman spectroscopy of trinitrotoluene detected by Silicon Photomultiplier
作者单位
西安建筑科技大学 理学院, 陕西 西安 710055
摘要
硅光电倍增器(SiPM)是近年来迅速发展起来的新型固态弱光探测器, 有望取代传统的光电倍增器(PMT)用于拉曼检测中。为了解决拉曼检测中的荧光干扰以及SiPM的高暗计数率的缺陷, 建立了基于SiPM为光探测器的时间分辨拉曼光谱测量系统。以三硝基甲苯(TNT)为样品, 重点研究了其拉曼峰的峰本比(PBR)随选通时间的变化规律。结果表明: 随着选通时间增大, 拉曼峰的PBR 呈现先增大后减小的趋势, 最后变化缓慢。当选通时间为400 ps时, 该方法所测得拉曼峰的PBR要优于商业拉曼谱仪和参考文献[12]采用的门控方法的结果, 并且此时系统所记录的SiPM暗计数水平与PMT相当。该方法在很大程度上实现了对样品荧光和SiPM高暗计数率的抑制, 显著提高了拉曼谱的PBR。
Abstract
Silicon Photomultiplier (SiPM) is a new type of solid state photodetector developed rapidly in recent decades, and has the potential to replace photo multiplier tube(PMT) in the Raman detection. A time-resolved Raman spectroscopy system based on a Silicon Photomultiplier (SiPM) was established in order to limit the influence of intense fluorescence on Raman spectroscopy, and alleviate the high dark count rate(DCR) problem of the SiPM. The variation of the Peak-to-Background Ratio (PBR) of Raman peaks along with counting time was investigated using trinitrotoluene(TNT) as the sample. Results indicate that with counting time increasing, the PBR of Raman peaks is increasing first and then decreasing, finally changing slowly. When counting time is 400 ps, a best PBR is achieved for the Raman peaks. The results are superior to that achieved by the commercial Raman spectrometers and the methods used in the literature. Also, the dark counts system collected are comparable to PMT. The method proposed in the paper is capable of reducing the high fluorescence background and the effects of SiPM′s high DCR to a great extent, facilitating a marked improvement in the Raman PBR.
参考文献

[1] Liu Cuiling, Zhao Qi, Sun Xiaorong, et al. QuEChERS-Raman spectroscopy method for detecting imidacloprid residue in cucumbers[J]. Infrared and Laser Engineering, 2017, 46(11): 1123002. (in Chinese)

[2] Zhang Ming, Zhu Shaoling, Gao Fei, et al. Breast cancer oxyhemoglobin surface enhanced Raman spectroscopy[J]. Infrared and Laser Engineering, 2017, 46(4): 0433001. (in Chinese)

[3] Giancarlo Fini. Applications of Raman spectroscopy to pharmacy [J]. J Raman Spectrosc, 2004, 35: 335-337.

[4] Wu Bin, Chen Kunfeng, Wang Hengfei, et al. Effect of ethanol molecules on change of water hydrogen bonding with laser Raman spectra[J]. Infrared and Laser Engineering, 2013, 42(11): 2951-2956. (in Chinese)

[5] Esam M A Ali, Howell G M Edwards, Ian J Scowen. In-situ detection of single particles of explosive on clothing with confocal Raman microscopy [J]. Talanta, 2009, 78: 1201-1203.

[6] Nancy T Kawai, Kevin M Spencer. Raman spectroscopy for homeland defense applications [J]. Raman Technology For Today′s Spectroscopists, 2004(6): 54-58.

[7] Carter J C, Angel S M, Lawrence-Snyder M, et al. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument[J]. Appl Spectrosc, 2005, 59: 769-775.

[8] Marrocchesi P S, Bagliesi M G, Basti A, et al. Photon counting with a FDIRC Cherenkov prototype readout by SiPM arrays[J]. Nuclear Instruments and Methods in Physics Research Section A, 2017, 845: 447-451.

[9] Wei Qingyang, Ma Tianyu, Xu Tianpeng, et al. Evaluation of signal energy calculation methods for a light-sharing SiPM-based PET detector[J]. Nuclear Instruments and Methods in Physics Research Section A, 2017, 848: 81-86.

[10] Dolenec R, Korpar S, Kri 觩an P, et al. Ultrafast detection in particle physics and positron emission tomography using SiPMs[J]. Nuclear Instruments and Methods in Physics Research Section A, 2017, 876:257-259.

[11] Akiba M, Inagaki K, Tsujino K. Photon number resolving SiPM detector with 1 GHz count rate [J]. Optical Express, 2012, 20(3): 2779-2788.

[12] Zhang G Q, Hu X B, Yang R, et al. Fast identification of trace substance by single-photon detection of characteristic Raman scatterings with gated coincidence technique and multipixel photon counters[J]. Applied Optics, 2010, 49(14): 2601-2605.

[13] Zhang Chunling, Li Zhe, Wu Zhenglong, et al. Study of surface enhanced Raman scattering of trace trinitrotoluene based on silver colloid nanoparticles[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 686-690. (in Chinese)

[14] Keson M 魡, Nordberg M, Ehlerding A, et al. Picosecond laser pulses improves sensitivity in standoff explosive detection[C]//Proceedings of SPIE, 2011, 8017: 80171C.

张春玲, 王凯君, 庞庆. 采用SiPM探测三硝基甲苯的时间分辨拉曼光谱[J]. 红外与激光工程, 2018, 47(10): 1020004. Zhang Chunling, Wang Kaijun, Pang Qing. Time-resolved Raman spectroscopy of trinitrotoluene detected by Silicon Photomultiplier[J]. Infrared and Laser Engineering, 2018, 47(10): 1020004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!