红外与毫米波学报, 2017, 36 (2): 149, 网络出版: 2017-06-06  

中红外硅微透镜阵列的离焦效应

Focal shift of silicon microlens array in mid-infrared regime
作者单位
1 厦门大学 电子工程系 微纳光电子研究室, 福建 厦门 361005
2 洛阳光电技术研究中心, 河南 洛阳 471009
摘要
采用严格数值算法对中红外硅微透镜阵列进行了模拟, 该微透镜阵列特征尺寸小于波长工作波长.研究发现该微透镜阵列存在一个显著的离焦效应, 其离焦量达到0.4左右, 超出了现有的传统理论模型预测范围.对微透镜阵列进行了制作和焦距测试, 发现测试结果跟数值模拟基本吻合.微纳衍射光学集成系统中透镜离焦量是系统集成非常重要的一个参数, 该研究结果为硅微透镜阵列和中红外探测器光学集成提供有效参考.
Abstract
In this study rigorous numerical model was utilized to characterize the focal shift of the diffractive mid-infrared (MIR) silicon microlens arrays (MLAs) with the critical size smaller than the working wavelength. We found a more pronounced focal shift in mid-infrared wavelength which is out of the range predicted by existing models. Focal properties of the MLAs were also measured experimentally. The results agrees well with the simulation results. Our results provide a reference point in understanding the focal shift in MIR regime, which is important in terms of deciding the focal length of micro-nano lens systems, especially when dealing with the integration of diffractive devices in infrared optical system.
参考文献

[1] Kumaresan Y, Rammohan A, Dwivedi P, et al. Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography[J]. ACS Appl. Mater. Interfaces, 2013. 5(15):7094.

[2] Zhang L, Ma X Z, Zhuang J L, et al. Microfabrication of a diffractive microlens array on n-GaAs by an efficient electrochemical method[J]. Adv. Mater., 2007. 19(22): 3912-3918.

[3] Deng Z F, Chen F, Yang Q, et al.Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging[J]. Adv. Funct. Mater., 2016. 26(12): 1995-2001.

[4] Agranov G, V Berezin, R H Tsai. Crosstalk and microlens study in a color CMOS image sensor[J]. IEEE Trans. Electron Dev., 2003. 50(1):4-11.

[5] Guo N, Hu W D, Chen X S, et al. Optimization of microlenses for InSb infrared focal-plane arrays[J]. J. Electron. Mater., 2011. 40(8): 1647-1650.

[6] Binnie T D. Fast imaging microlenses[J]. Appl. Opt., 1994. 33(7):1170-1175.

[7] Liu H W, Chen F, Yang Q, et al. Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections[J]. Appl. Phys. Lett., 2012. 100(13): DOI: 10.1063/1.3696019.

[8] Huang T F, Hua S H, Hu K C, et al. LED chip having micro-lens structure[P]. 2012, Google Patents.

[9] Stern M B. Binary optics: A VLSI-based microoptics technology[J]. Microelectron. Eng., 1996. 32(1-4): 369-388.

[10] Li Y J, Wolf E. Focal shifts in diffracted converging spherical waves[J]. Opt. Commun, 1981. 39(4): 211-215.

[11] Hu B, Wang Q J, Zhang Y. Systematic study of the focal shift effect in planar plasmonic slit lenses. Nanotechnology, 2012. 23(44): 444002.

[12] Gao Y, Liu J L, Zhang X R, et al.Analysis of focal-shift effect in planar metallic nanoslit lenses[J]. Opt. Express, 2012. 20(2):1320-9.

[13] Hernandez-Aranda R I, Gutierrez-Vega J C. Focal shift in vector Mathieu-Gauss beams[J]. Opt. Express, 2008. 16(8): 5838-48.

[14] Verslegers L, Catrysse P B, Yu Z F, et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Lett., 2009. 9(1):235-238.

[15] Aristov V, Grigoriev M, Kuznetsov S, et al. X-ray refractive planar lens with minimized absorption[J]. Appl. Phys. Lett., 2000. 77(24).

[16] Yamazaki R, Obana A, Kimata M. Microlens for uncooled infrared array sensor[J]. Electronics and Communications in Japan, 2013. 96(2):1-8.

[17] Deng Z F, Yang Q, Chen F, et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining[J]. Opt. Lett., 2015. 40(9):1929-1930.

[18] Liu Y L, Liu H. Analysis of a diffractive microlens using the finite-difference time-domain method[J]. J. Micro-Nanolith Mem, 2010. 9(3).

[19] Gao H W, Hyun J K, Lee M H, et al. Broadband Plasmonic Microlenses Based on Patches of Nanoholes[J]. Nano Lett., 2010. 10(10): 4111-4116.

[20] Li Y. Dependence of the focal shift on Fresnel number and F-Number[J]. J. Opt. Soc. Am., 1982. 72(6).

[21] Arnaud J. Representation of Gaussian beams by complex rays[J]. Appl. Opt., 1985. 24(4):538-539.

[22] Schmitz M, Bryngdahl O. Rigorous concept for the design of diffractive microlenses with high numerical apertures[J]. J. Opt. Soc. Am. A, 1997. 14(4): DOI: 10.1364/JOSAA.14.000901.

[23] Pomme D A, Moharam M G, Grann E B. Limits of scalar diffraction theory for diffractive phase elements[J]. J. Opt. Soc. Am. A, 1994. 11(6):1827-1830.

[24] Prather D W, Shi S Y. Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements[J]. J. Opt. Soc. Am. A, 1999. 16(5): DOI: 10.1364/JOSAA.16.001131.

[25] Lin L, Goh X M, McGuinness L P,,et al. Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing[J]. Nano Lett., 2010. 10(5):1936-1940.

[26] Vaillant J, Crocherie A, Hirigoyen F, et al. Uniform illumination and rigorous electromagnetic simulations applied to CMOS image sensors[J]. Opt. Express, 2007. 15(9): 5494-503.

[27] Prather D W, Shi S Y. Combined scalar-vector method for the analysis of diffractive optical elements[J]. Opt. Eng., 2000. 39(7).

[28] Taflove A, Hagness S C. Computational electrodynamics[M]. Artech house, Boston, 2000.

[29] Mait J N. Understanding diffractive optic design in the scalar domain[J]. J. Opt. Soc. Am. A, 1995. 12(10).

[30] Li Y J. A high-accuracy formula for fast evaluation of the effect of focal shift[J]. J. Mod. Opt., 1991. 38(9).

[31] Ruffieux P. On the chromatic aberration of microlenses[J]. Opt. Express, 2006. 14(11):4687-4689.

[32] Szapiel S, Scharf T, Herzig H P, et al. Marechal intensity formula for small-Fresnel-number systems[J]. Opt. Lett., 1983. 8(6).

[33] Niklasson G A, Granqvist C G, Hunderi O. Effective medium models for the optical-properties of inhomogeneous materials[J]. Appl. Opt., 1981. 20(1).

左海杰, 杨文, 张江勇, 应磊莹, 张保平, 侯治锦, 陈洪许, 司俊杰. 中红外硅微透镜阵列的离焦效应[J]. 红外与毫米波学报, 2017, 36(2): 149. ZUO Hai-Jie, YANG Wen, ZHANG Jiang-Yong, YING Lei-Ying, ZHANG Bao-Ping, HOU Zhi-Jin, CHEN Hong-Xu, SI Jun-Jie. Focal shift of silicon microlens array in mid-infrared regime[J]. Journal of Infrared and Millimeter Waves, 2017, 36(2): 149.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!