High Power Laser Science and Engineering, 2019, 7 (1): 01000e11, Published Online: Feb. 25, 2019  

High efficiency second harmonic generation of nanojoule-level femtosecond pulses in the visible based on BiBO

Author Affiliations
1 GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
2 Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
Figures & Tables

Fig. 1. Experimental setup in SHG experiment. $\unicode[STIX]{x1D706}/2,\unicode[STIX]{x1D706}/4$: waveplates; EC: pump energy control; FL: focusing lens; C: nonlinear crystal; CL: collimating lens; DM: dichroic mirror; FM: flip mirror; SM: spectrometer; CAM: camera; PM: power meter; SA: spectrum analyzer; PC: computer.

下载图片 查看原文

Fig. 2. Comparison between pump and SHG spatial profile, respectively.

下载图片 查看原文

Fig. 3. Autocorrelation measurement of the pulse at 1030, 1054, 1000 and 980 nm for top left, top right, bottom left and bottom right, respectively.

下载图片 查看原文

Fig. 4. Input (red) and depleted (orange) signal spectra for 1030, 1054, 1000 and 980 nm pulses.

下载图片 查看原文

Fig. 5. SHG power versus input power at different wavelengths.

下载图片 查看原文

Fig. 6. SHG efficiency versus input energy and average power for different wavelengths.

下载图片 查看原文

Fig. 7. Comparison (measured and simulated data) of the SHG efficiency as a function of the input intensity for different wavelengths.

下载图片 查看原文

Fig. 8. Experimental and simulated second harmonic generation spectrum of 1030 nm pumping beam.

下载图片 查看原文

Fig. 9. SHG efficiency versus focal spot diameter at two different energies: 3.7 and 3.8 nJ for the same crystal length.

下载图片 查看原文

Fig. 10. Second harmonic generation simulation determining the temporal length of the SHG pulse.

下载图片 查看原文

Table1. Autocorrelation and spectral experimental data. $\unicode[STIX]{x1D70F}_{\text{AC}}$ – FWHM of the autocorrelation trace, $\unicode[STIX]{x1D70F}_{\text{pulse}}$ – retrieved Gaussian FWHM pulse length, $\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ – spectral FWHM bandwidth and $\unicode[STIX]{x1D70F}_{\text{pulse}}^{\text{TL}}$ – supported (transform-limited) pulse length.

$\unicode[STIX]{x1D706}$ (nm)$\unicode[STIX]{x1D70F}_{\text{AC}}$ (fs)$\unicode[STIX]{x1D70F}_{\text{pulse}}$ (fs)$\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ (nm)$\unicode[STIX]{x1D70F}_{\text{pulse}}^{\text{TL}}$ (fs)
103016411614.3109
105417412316.1101
100022515912.4118
980263186 9.3152

查看原文

Table2. SHG spectral experimental data. $\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ represents the FWHM bandwidth of the SHG spectrum and $\unicode[STIX]{x1D70F}_{\text{SHG}}^{\text{TL}}$ the retrieved FWHM of the supported SHG pulse temporal length assuming Gaussian shape.

$\unicode[STIX]{x1D706}$ (nm)$\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ (nm)$\unicode[STIX]{x1D70F}_{\text{SHG}}^{\text{TL}}$ (fs)
5152.98130.6
5273.89104.5
5003.16118.2
4901.89186.5

查看原文

Mario Galletti, Hugo Pires, Victor Hariton, Celso Paiva João, Swen Künzel, Marco Galimberti, Gonçalo Figueira. High efficiency second harmonic generation of nanojoule-level femtosecond pulses in the visible based on BiBO[J]. High Power Laser Science and Engineering, 2019, 7(1): 01000e11.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!