光学 精密工程, 2015, 23 (8): 2306, 网络出版: 2015-10-22  

10-6量级精密离心机输出加速度测量模型及不确定度评定

Acceleration measurement model and uncertainty evaluation of 10-6 order precision centrifuge
作者单位
中国工程物理研究院 总体工程研究所, 四川 绵阳 621999
摘要
为了给高精度惯性仪表校准试验提供高精准的加速度输入值, 研究了精密离心机输出加速度的建模、测量及不确定度评定方法。建立了适用于10-6量级高精度精密离心机的加速度测量模型及不确定度传递模型。基于本课题组提出的高精度测量方法, 完成了10-6量级精密离心机的静动态半径、静动态俯仰失准角等重要分量的高精度测量。分析、归纳了测量不确定度源, 分别基于建立的加速度测量不确定度传递模型和蒙特卡洛方法完成了该精密离心机输出加速度的测量不确定度评定。最后, 讨论和总结了高精度精密离心机输出加速度建模和精度评定的相关问题。结果表明: 该精密离心机对1g~100g输出加速度的相对标准不确定度均小于3×10-6, 其精度与目前国际上公开的最高精度离心机处于同一数量级; 建立的测量模型及测量不确定度评定方法可以为相关精度等级的精密离心机研制和评价提供参考。
Abstract
To obtain the high accuracy acceleration inputs for calibration of inertial instruments, the mathematical modeling, measurement and associated uncertainty evaluation of the acceleration produced by a precision centrifuge were investigated. An acceleration measurement model and an associated uncertainty propagation model were established for the 10-6 order high precision centrifuge. Then, major components, static and dynamic diameters and static and dynamic longitudinal misalignment angles, in the acceleration measurement model were measured precisely by using our proposed methods. Based on identification and quantization of measurement uncertainty sources, the uncertainty evaluation of acceleration measurement was implemented respectively by employing the uncertainty evaluation mathematical model of acceleration and Monte Carlo Method(MCM). Finally, some issues were discussed and summarized on the mathematical model and uncertainty evaluation . Test results indicate that the acceleration relative standard uncertainty of the developed precise centrifuge is less than 3×10-6 under the spectrum of 1g-100g. The precision of the developed precise centrifuge reaches the international advanced level and the proposed measuring model and associated uncertainty evaluation method can provide some references for other precise centrifuges.
参考文献

[1] 陈光炎, 吴嘉丽, 赵龙, 等. 基于阿基米德螺旋线的低g值微惯性开关[J]. 光学 精密工程, 2009, 17(6): 1257-1261.

    CHEN G Y, WU J L, ZHAO L, et al.. Low-g micro inertial switch based on Archimedes’ spiral[J]. Opt. Precision Eng., 2009, 17(6): 1257-1261.

[2] IEEE Recommended Practice for Precision Centrifuge Testing of Linear Accelerometers[S]. 2009.

[3] 王世明, 任顺清. 精密离心机误差对石英加速度计误差标定精度分析[J]. 宇航学报, 2012, 33(4): 520-526.

    WANG SH M, REN SH Q. Relationship between calibration accuracy of error model coefficients of accelerometer and error of precision centrifuge[J]. Journal of Astronautics, 2012, 33(4): 520-526.(in Chinese)

[4] 陈希军, 任顺清, 李巍. 加速度计高阶误差模型系数的标定方法[J]. 中国惯性技术学报, 2010, 18(4): 508-512.

    CHEN X J, REN SH Q, LI W. Calibrating method for high-order coefficients in accelerometer error model[J]. Journal of Chinese Inertial Technology, 2010, 18(4): 508-512.(in Chinese)

[5] CHEN X J, REN SH Q. Two algorithms of working acceleration generated by a precision centrifuge with two rotating axes[J]. Journal of Harbin Institute of Technology(New Series),2006,13(1): 1-3.

[6] 乔仁晓, 孟晓风, 季宏. 加速度计非线性项系数校准误差分析与建模[J]. 系统仿真学报, 2008, 20(6): 1633-1635.

    QIAO R X, MENG X F, JI H. Error analysis and modeling in calibration of accelerometer’s nonlinear terms’s coefficients[J]. Journal of System Simulation, 2008, 20(6): 1633-1635.(in Chinese)

[7] JJG1066-2011. 精密离心机检定规程[S]. 2011.

    JJG1066-2011. Verification Regulation of Precision Centrifuge[S]. 2011.(in Chinese)

[8] 吴付岗, 王军. 精密离心机加速度载荷模型研究[J]. 机械工程学报, 2010, 46(18): 36-40.

    WU F G, WANG J. Research on acceleration load model of precision centrifuge[J]. Journal of Mechanical Engineering, 2010, 46(18): 36-40.(in Chinese)

[9] JJF 1116-2004. 线加速度计的精密离心机校准规范[S]. 2004.

    JJF 1116-2004. Calibration Specification for Linear Accelerometer Used Precision Centrifuge[S]. 2004.(in Chinese)

[10] 杨巨宝. 精密离心机半径值动态测试系统[J]. 宇航计测技术,1994, 13(2): 5-10.

    YANG J B. Dynamic measurement system for the radius of precision centrifuge[J]. Journal of Astronautic Metrology and Measurement, 1994, 13(2): 5-10.(in Chinese)

[11] 陈希军, 孙群学, 任顺清. 离心机大臂动态半径长度的测量[J]. 宇航计测技术,2002, 22(2): 10-13.

    CHEN X J, SUN Q X, REN SH Q. Measurement of centrifuge arm’s dynamic radius length[J]. Journal of Astronautic Metrology and Measurement, 2002,22(2): 10-13.(in Chinese)

[12] 刘健, 王光宝, 刘宇, 等. 转台离心机动态半径测试方法的研究[J]. 宇航计测技术,2006, 26(6): 1-3.

    LIU J, WANG G B, LIU Y, et al.. Revolving table centrifugal machine dynamic radius measuring method [J]. Journal of Astronautic Metrology and Measurement,2006, 26(6): 1-3.(in Chinese)

[13] 熊磊, 何懿才, 龙祖洪, 等. 精密离心机不确定度分析与应用[J]. 航空计测技术, 2003, 23(6): 36-37.

    XIONG L, HE Y C, LONG Z H, et al.. Uncertainty analysis and application of precise centrifuge [J]. Metrology & Measurement Technology, 2003, 23(6): 36-37.(in Chinese)

[14] Uncertainty of measurement-Part 3: Guide to the expression of uncertainty in measurement[S]. ISO/IEC GUIDE 98-3.

[15] MOSCHIONI G, SAGGIN B, TARABINI, et al.. Use of design of experiments and Monte Carlo method for instruments optimal design[J]. Measurement, 2013, (46): 976-984.

[16] 凌明祥, 王珏, 宁菲, 等. 地球自转及天体作用力对精密离心机的影响[J]. 装备环境工程, 2014, 11(1): 97-99.

    LING M X, WANG J, NING F, et al.. Influence of Earth’s rotation and Celestial forces on precision centrifuge[J]. Equipment Environment Engineering, 2014, 11(1): 97-99.(in Chinese)

[17] 凌明祥, 李明海, 杨新, 等. 高精度精密离心机静态半径测量方法与应用[J]. 仪器仪表学报, 2014, 35(5): 1072-1078.

    LING M X, LI M H, YANG X, et al.. A measurement method and application for static radius of high precision centrifuge [J]. Chinese Journal of Scientific Instrument, 2014, 35(5): 1072-1078.(in Chinese)

凌明祥, 黎启胜, 张容, 李明海, 宁菲, 卢永刚. 10-6量级精密离心机输出加速度测量模型及不确定度评定[J]. 光学 精密工程, 2015, 23(8): 2306. LING Ming-xiang, LI Qi-sheng, ZHANG Rong, LI Ming-hai, NING Fei, LU Yong-gang. Acceleration measurement model and uncertainty evaluation of 10-6 order precision centrifuge[J]. Optics and Precision Engineering, 2015, 23(8): 2306.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!