Photonics Research, 2018, 6 (11): 11001062, Published Online: Nov. 11, 2018   

Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon

Author Affiliations
1 Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK
2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
3 Department of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK
Copy Citation Text

Mengya Liao, Siming Chen, Zhixin Liu, Yi Wang, Lalitha Ponnampalam, Zichuan Zhou, Jiang Wu, Mingchu Tang, Samuel Shutts, Zizhuo Liu, Peter M. Smowton, Siyuan Yu, Alwyn Seeds, Huiyun Liu. Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon[J]. Photonics Research, 2018, 6(11): 11001062.

References

[1] A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, J. E. Bowers. Quantum dot lasers for silicon photonics [Invited]. Photon. Res., 2015, 3: B1-B9.

[2] A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, J. E. Bowers. High performance continuous wave 1.3??μm quantum dot lasers on silicon. Appl. Phys. Lett., 2014, 104: 041104.

[3] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, H. Liu. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics, 2016, 10: 307-311.

[4] S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, H. Liu. Electrically pumped continuous-wave 1.3??μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt. Express, 2017, 25: 4632-4639.

[5] D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, J. E. Bowers. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photon., 2017, 5: 1094-1100.

[6] Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, K. M. Lau. Optically pumped 13??μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt. Lett., 2016, 41: 1664-1667.

[7] Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, J. E. Bowers. 1.3??μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 2017, 4: 940-944.

[8] N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, A. Zhukov. Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3??μm. Opt. Lett., 2017, 42: 3319-3322.

[9] S. Chen, M. Tang, Q. Jiang, J. Wu, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, P. Smowton, A. Seeds, H. Liu. InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate. ACS Photon., 2014, 1: 638-642.

[10] M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Jin, I. Ross, A. Seeds, H. Liu. Monolithically integrated electrically pumped continuous-wave III-V quantum dot light sources on silicon. IEEE J. Sel. Top. Quantum Electron., 2017, 23: 1900910.

[11] Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, S. Yu. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 2018, 5: 528-533.

[12] J. Wu, S. Chen, A. Seeds, H. Liu. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J. Phys. D, 2015, 48: 363001.

[13] E. Tournié, L. Cerutti, J.-B. Rodriguez, H. Liu, J. Wu, S. Chen. Metamorphic III–V semiconductor lasers grown on silicon. MRS Bull., 2016, 41: 218-223.

[14] 14AgrawalG. P., Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010).

[15] 15KrakowskiM.ResneauP.CalligaroM.LiuH.HopkinsonM., “High power, very low noise, C.W. operation of 1.32  μm quantum-dot Fabry–Perot laser diodes,” in IEEE 20th International Semiconductor Laser Conference, Conference Digest (IEEE, 2006), pp. 39–40.

[16] A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, D. Bimberg. Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opt. Express, 2007, 15: 5388-5393.

[17] A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, A. Zhukov. Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser. Electron. Lett., 2007, 43: 1430-1431.

[18] M. A. Tischler, T. Katsuyama, N. A. El-Masry, S. M. Bedair. Defect reduction in GaAs epitaxial layers using a GaAsP-InGaAs strained-layer superlattice. Appl. Phys. Lett., 1985, 46: 294-296.

[19] A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, J. E. Bowers. Reflection sensitivity of 1.3??μm quantum dot lasers epitaxially grown on silicon. Opt. Express, 2017, 25: 9535-9543.

[20] Y.-G. Zhou, C. Zhou, C.-F. Cao, J.-B. Du, Q. Gong, C. Wang. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt. Express, 2017, 25: 28817-28824.

[21] A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, J. Bowers. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon. IEEE J. Sel. Top. Quantum Electron., 2015, 21: 1900708.

[22] B. Jalali, S. Fathpour. Silicon photonics. J. Lightwave Technol., 2006, 24: 4600-4615.

[23] M. Akiyama, Y. Kawarada, K. Kaminishi. Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD. Jpn. J. Appl. Phys., 1984, 23: L843-L845.

[24] M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, H. Liu. Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. IEEE J. Sel. Top. Quantum Electron., 2016, 22: 50-56.

[25] J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, D. J. Mowbray. In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates. Opt. Express, 2016, 24: 6196-6202.

[26] 26“IEEE P802.3ba 40  Gb/s and 100  Gb/s Ethernet task force,” IEEE Std 802.3ba (2010).

[27] L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, K. J. Malloy. Optical characteristics of 1.24??μm InAs quantum-dot laser diodes. IEEE Photon. Technol. Lett., 1999, 11: 931-933.

[28] A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, Z. I. Alferov. InAs/InGaAs/GaAs quantum dot lasers of 1.3??μm range with enhanced optical gain. J. Cryst. Growth, 2003, 251: 729-736.

Mengya Liao, Siming Chen, Zhixin Liu, Yi Wang, Lalitha Ponnampalam, Zichuan Zhou, Jiang Wu, Mingchu Tang, Samuel Shutts, Zizhuo Liu, Peter M. Smowton, Siyuan Yu, Alwyn Seeds, Huiyun Liu. Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon[J]. Photonics Research, 2018, 6(11): 11001062.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!