激光与光电子学进展, 2017, 54 (7): 071403, 网络出版: 2017-07-05   

大功率半导体激光器性能改善的研究 下载: 587次

Study on Performance Improvement of High Power Semiconductor Lasers
作者单位
北京工业大学光电子技术省部共建教育部重点实验室, 北京 100124
摘要
电流的侧向限制对半导体激光器具有重要意义,在半导体激光器有源区加入侧向限制结构一方面可以实现侧向限制,另一方面可以在一定范围内降低阈值电流密度。但是常规的侧向限制方法无论是侧向波导结构还是浅隔离槽结构都无法高效地抑制电流的侧向扩展。设计了新型的深隔离槽结构,利用Comsol软件仿真模拟侧向限制,发现深度超过外延层厚度的深隔离槽结构能更有效地提高电流的注入效率。在工艺中利用感应耦合等离子体刻蚀在距离脊型台两侧100 μm的位置刻蚀深度为4 μm的深隔离槽。实验结果表明,工作电流为5 A时,腔长4 mm具有深隔离槽结构的半导体激光器芯片输出功率为 3.6 W,阈值电流为0.3 A,阈值电流密度为78.95 A/cm2。结果表明新型深隔离槽结构可以有效抑制电流的侧向扩展。
Abstract
Lateral confinement of the current is significant to semiconductor lasers. Lateral confinement can be achieved and threshold current density can be decreased in certain range if lateral confinement structure is embedded in active region of semiconductor lasers. But conventional lateral confinement method cannot suppress the lateral spread current effectively no matter whether lateral waveguide structure or shallow isolation groove is adopted. A new type of deep isolation groove structure is proposed, and lateral confinement is stimulated based on Comsol software. The deep isolation groove structure with etching depth more than the thickness of epitaxial layer is more effective when enhancing current injection efficiency. Two deep isolation grooves of 4 μm depth located at 100 μm away from the ridge type at both sides are etched by inductively coupled plasma etching. Experimental results show that, given the current of 5 A, the output power of semiconductor laser chip with cavity length of 4 mm and deep isolation groove is 3.6 W. The threshold current is 0.3 A. The threshold current density is 78.95 A/cm2. It indicates that the new type of deep isolation groove structure can suppress the lateral spread of the current effectively.
参考文献

[1] 王立军, 宁永强, 秦 莉, 等. 大功率半导体激光器研究进展[J]. 发光学报, 2015, 36(1): 1-19.

    Wang Lijun, Ning Yongqiang, Qin Li, et al. Development of high power diode laser[J]. Chinese Journal of Luminescence, 2015, 36(1): 1-19.

[2] 黄德修. 半导体光电子学[M]. 北京: 电子工业出版社, 2013: 140-144.

    Huang Dexiu. Semiconductor optoelectronics[M]. Beijing: Publishing House of Electronics Industry, 2013:140-144.

[3] 王启明. 中国半导体激光器的历次突破与发展[J]. 中国激光, 2010, 37(9): 2190-2197.

    Wang Qiming. Breakthroughs and developments of semiconductor laser in China[J]. Chinese J Lasers, 2010, 37(9): 2190-2197.

[4] 邹德恕, 崔碧峰, 李建军, 等. 隧道带间耦合级联新型激光器扩展电流的优化[J]. 光电子·激光, 2001, 12(10): 989-991.

    Zou Deshu, Cui Bifeng, Li Jianjun, et al. Optimization on the expanding current of novel inter-band tunnel cascade coupled lasers[J]. Journal of Optoelectronic·Laser, 2001, 12(10): 989-991.

[5] 郑晓刚, 李 特, 芦 鹏, 等. 980 nm半导体激光器腔面温度特性分析[J]. 中国激光, 2013, 40(11): 1102004.

    Zheng Xiaogang, Li Te, Lu Peng, et al. Analysis of temperature characteristics of 980 nm semiconductor laser[J]. Chinese J Lasers, 2013, 40(11): 1102004.

[6] 李建军, 崔碧峰, 邓 军, 等. 非对称超大光腔980 nm大功率半导体激光器[J]. 中国激光, 2013, 40(11): 1102011.

    Li Jianjun, Cui Bifeng , Deng Jun, et al. 980 nm high power semiconductor laser with asymmetric supper large optical cavity[J]. Chinese J Lasers, 2013, 40(11): 1102011.

[7] 江剑平. 半导体激光器[M]. 北京: 电子工业出版社, 2000: 52-54.

    Jiang Jianping. Semiconductor laser[M]. Beijing: Publishing House of Electronics Industry, 2000: 52-54.

孔真真, 崔碧峰, 黄欣竹, 李莎, 房天啸, 郝帅. 大功率半导体激光器性能改善的研究[J]. 激光与光电子学进展, 2017, 54(7): 071403. Kong Zhenzhen, Cui Bifeng, Huang Xinzhu, Li Sha, Fang Tianxiao, Hao Shuai. Study on Performance Improvement of High Power Semiconductor Lasers[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071403.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!