光学学报, 2020, 40 (21): 2129002, 网络出版: 2020-11-02   

汤姆孙散射系统中发黑材料的表面散射特性测量 下载: 1185次

Measurement of Surface Scattering Characteristics of Black Materials in Thomson Scattering System
作者单位
1 中国科学技术大学工程与应用物理系近地空间重点实验室, 安徽 合肥 230026
2 上海交通大学IFSA协同创新中心, 上海 200240
引用该论文

王鹏, 袁鹏, 谭伟强, 郑坚. 汤姆孙散射系统中发黑材料的表面散射特性测量[J]. 光学学报, 2020, 40(21): 2129002.

Peng Wang, Peng Yuan, Weiqiang Tan, Jian Zheng. Measurement of Surface Scattering Characteristics of Black Materials in Thomson Scattering System[J]. Acta Optica Sinica, 2020, 40(21): 2129002.

参考文献

[1] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the national ignition facility[J]. Physics of Plasmas, 2004, 11(2): 339-491.

[2] Dimits A M, Bateman G, Beer M, et al. Comparisons and physics basis of tokamak transport models and turbulence simulations[J]. Physics of Plasmas, 2000, 7(3): 969-983.

[3] Glenzer S H, Alley W E, Estabrook K G, et al. Thomson scattering from laser plasmas[J]. Physics of Plasmas, 1999, 6(5): 2117-2128.

[4] Bai B, Zheng J, Liu W, et al. Thomson scattering measurement of gold plasmas produced with 0.351 μm laser light[J]. Physics of Plasmas, 2001, 8(9): 4144-4148.

[5] Wang Z, Zheng J, Zhao B, et al. Thomson scattering from laser-produced gold plasmas in radiation conversion layer[J]. Physics of Plasmas, 2005, 12(8): 082703.

[6] Li Z C, Zheng J, Ding Y K, et al. Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype[J]. Chinese Physics B, 2010, 19(12): 125202.

[7] Peacock N J, Robinson D C, Forrest M J, et al. Measurement of the electron temperature by Thomson scattering in tokamak T3[J]. Nature, 1969, 224(5218): 488-490.

[8] SheffieldJ, FroulaD, Glenzer SH, et al. Plasma scattering of electromagnetic radiation: theory and measurement techniques[M]. 2nd ed. Pittsburgh: Academic press, 2010.

[9] YamadaI, FunabaH, YasuharaR, et al., 2016, 87(11): 11E531.

[10] Nilson D G, Hill D N, Evans J, et al. Thomson scattering stray light reduction techniques using a CCD camera[J]. Review of Scientific Instruments, 1997, 68(1): 704-707.

[11] Jacobson C M, Borchardt M T, den Hartog D J, et al. 87(11): 11E511[J]. mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus, MST, . The Review of Scientific Instruments, 2016.

[12] Al R S, Barth C J, et al. High sensitivity imaging Thomson scattering for low temperature plasma[J]. The Review of Scientific Instruments, 2008, 79(1): 013505.

[13] Schlossberg D J, Bongard M W, Fonck R J, et al. Progress on Thomson scattering in the Pegasus toroidal experiment[J]. Journal of Instrumentation, 2013, 8(11): C11019.

[14] Glenzer S H, Redmer R. X-ray Thomson scattering in high energy density plasmas[J]. Reviews of Modern Physics, 2009, 81(4): 1625-1663.

[15] Hutchinson I H. Principles of plasma diagnostics: second edition[J]. Plasma Physics and Controlled Fusion, 2002, 44(12): 2603.

[16] Berni L A. Albuquerque B F C. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak[J]. The Review of Scientific Instruments, 2010, 81(12): 123504.

[17] Kunze HJ. Plasma diagnostics[M] //Dinklage A, Klinger T, Marx G, et al. Plasma physics. Lecture notes in physics. Heidelberg: Springer, 2005, 670: 349- 373.

[18] Xiao S M, Hu A L, Chen H, et al. Analysis of baffles for stray light reduction in the Thomson scattering diagnostic on EAST[J]. Fusion Engineering and Design, 2016, 105: 33-38.

[19] Levesque J P, Litzner K D, Mauel M E, et al. A high-power spatial filter for Thomson scattering stray light reduction[J]. The Review of Scientific Instruments, 2011, 82(3): 033501.

[20] Xiao S M, Zang Q, Han X F, et al. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST[J]. The Review of Scientific Instruments, 2016, 87(7): 073506.

[21] Kumar R, Singh R, Kumar A. Studies on scattering of laser radiation from viewing dump in tokamak Thomson scattering system[J]. Applied Physics B, 2012, 108(2): 325-333.

[22] Liu W, Mao W, Li H, et al. Progress of the Keda Torus experiment Project in China: design and mission[J]. Plasma Physics and Controlled Fusion, 2014, 56(9): 094009.

[23] Thomas M E, Blodgett D W, Hahn D V. Analysis and representation of BSDF and BRDF measurements[J]. Proceedings of SPIE, 2003, 5192: 158-167.

[24] Brown A M, Hahn D V, Thomas M E, et al. Optical material characterization through BSDF measurement and analysis[J]. Proceedings of SPIE, 2010, 7792: 779211.

[25] von Finck A, Trost M, Schröder S, et al. Parallelized multichannel BSDF measurements[J]. Optics Express, 2015, 23(26): 33493-33505.

[26] Schaaf C B, Gao F, Strahler A H, et al. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sensing of Environment, 2002, 83(1/2): 135-148.

[27] Lucht W, Schaaf C B, Strahler A H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 977-998.

[28] 史卫朝, 郑建明, 李言, 等. 加工表面双向反射分布函数的测量与建模[J]. 光学学报, 2018, 38(10): 1029001.

    Shi W C, Zheng J M, Li Y, et al. Measurement and modeling of bidirectional reflectance distribution function on cutting surface[J]. Acta Optica Sinica, 2018, 38(10): 1029001.

[29] Schröder S, Herffurth T, Blaschke H, et al. Angle-resolved scattering: an effective method for characterizing thin-film coatings[J]. Applied Optics, 2011, 50(9): C164-C171.

王鹏, 袁鹏, 谭伟强, 郑坚. 汤姆孙散射系统中发黑材料的表面散射特性测量[J]. 光学学报, 2020, 40(21): 2129002. Peng Wang, Peng Yuan, Weiqiang Tan, Jian Zheng. Measurement of Surface Scattering Characteristics of Black Materials in Thomson Scattering System[J]. Acta Optica Sinica, 2020, 40(21): 2129002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!