光学 精密工程, 2016, 24 (11): 2636, 网络出版: 2016-12-26   

全频段亚纳米精度氟化钙材料加工

Sub-nanometer precision optical fabrication of CaF2 materials
作者单位
中国科学院 长春光学精密机械与物理研究所 超精密光学工程研究中心, 吉林 长春 130033
摘要
考虑用CaF2材料制作投影光刻物镜可以明显提高其性能指标, 本文研究了CaF2材料加工工艺的全流程, 以实现CaF2材料的全频段高精度加工。首先, 利用沥青抛光膜和金刚石微粉使CaF2元件有较好的面形和表面质量。然后, 优化转速、抛光盘移动范围、压力等加工工艺参数, 并使用硅溶胶溶液抛光进一步降低CaF2元件的高频误差, 逐渐去除加工中产生的划痕并且获得极小中频误差(Zernike残差)和高频粗糙度。 最后, 在不改变CaF2元件高频误差的同时利用离子束加工精修元件面形。对100 mm口径氟化钙材料平面进行了加工和测试。结果表明: 其Zernike 37项拟合面形误差RMS值可达0.39 nm, Zernike残差RMS值为0.43 nm, 高频粗糙度均值为0.31 nm, 实现了对CaF2元件的亚纳米精度加工, 为研发高性能深紫外投影光刻物镜奠定了良好基础。
Abstract
When CaF2 materials are used in projection lenses, the performance of the projection lenses can be improved greatly. This paper researches the process of CaF2 crystal fabrication to realize its high precision optical fabrication in all wave bands. Firstly, the pitch lap and the diamond powder were used to get a relative better figure and surface quality of a CaF2 element. Then, the technological parameters of the polishing lap, such as rotation speed, movement range and pressure were optimized, and the colloidal silica was used in polishing to reduce the high frequency errors in the CaF2 element, remove the scratch in machining and to obtain a smaller mid-spatial error and smaller higher frequency roughness. Finally, the ion beam figuring technique was used to repair finely the surface figure of the element meanwhile maintaining the high frequency error in the CaF2 element. The Experiments were conduct on a CaF2 crystal plane with a diameter of 100 mm, and the results indicate that its 37 Zernike fit error and the Zernike residual error reach to 0.39 nm RMS and 0.43 nm RMS, respectively, and the roughness reaches to 0.31 nm on average. These results satisfy the nanometer machining requirements of the projection lens, and lay a basis for development of the high performance projection lenses.
参考文献

[1] MCINTYRE G, SANDERS D, RATNAM S, et al..The limitations of high index resists for 193 nm hyper-NA lithography [J]. SPIE, 2008, 6923: 692304-1-12.

[2] 谢超.氟化钙单晶材料的磁流变抛光工艺研究[D]. 长沙: 国防科技大学, 2009.

    XIE CH. Research on Magnetorheological Finishing Techniques of Optical Mirror Materials of CaF2 [D]. Changsha: Graduate School of National University of Defense Technology, 2009.(in Chinese)

[3] 马占龙, 王君林.超高精度光学元件加工技术[J]. 红外与激光工程, 2013, 42(6): 1485-1490.

    MA ZH L, WANG J L. Ultra-precision optical fabrication technology [J]. Infrared and Laser Engineering, 2013, 42(6): 1485-1490. (in Chinese)

[4] 马占龙, 隋永新.应用离子束修正大面形误差光学元件[J]. 光学学报, 2014, 34(1): 012201-1-5.

    MA ZH L, SUI Y X. Large optical surface error figuring by ion beam [J]. Acta Optica Sinica, 2014, 34(1): 012201-1-5.(in Chinese)

[5] 唐瓦, 邓伟杰, 李锐钢, 等.离子束抛光高陡度离轴非球面的去除函数修正[J]. 光学 精密工程, 2015, 23(6): 1572-1579.

    TANG W, DENG W J, LI R G, et al..Correction of removal function of ion beam figuring highly steep off-axis asphere [J]. Opt. Precision Eng., 2015, 23(6): 1572-1579. (in Chinese)

[6] 周林, 戴一帆, 解旭辉, 等.光学镜面离子束加工的可达性[J]. 光学 精密工程, 2007, 15(2): 160-166.

    ZHOU L, DAI Y F, XIE X H, et al..Machining reachability in ion beam figuring [J]. Opt. Precision Eng., 2007, 15(2): 160-166. (in Chinese)

[7] 马占龙, 彭利荣, 王高文, 等. 应用离子束修正高精度CGH基底[J]. 中国光学, 2016, 9(2): 270-276.

    MA ZH L, PENG L R, WANG G W, et al..High-precision CGH substrate figuring by ion beam [J]. Chinese Optics, 2016, 9(2): 270-276.(in Chinese)

[8] 王东海.氟化钙晶体化学机械抛光工艺研究[D]. 长春: 长春理工大学, 2009.

    WANG D H. Study on Chemical Mechanical Polishing of Calcium Fluoride Single Crystal [D]. Changchun: Changchun University of Science and Technology, 2009. (in Chinese)

[9] 冯建斌.大尺寸氟化钙晶体光学加工工艺研究[D]. 长春: 长春理工大学, 2012.

    FENG J B. Study on the Optical Processing Technique of Large Size CaF2 Crystal [D]. Changchun: Changchun University of Science and Technology, 2012. (in Chinese)

[10] 李圣怡, 戴一帆.大中型光学非球面镜制造与测量新技术[M]. 北京: 国防工业出版社, 2011.

    LI SH Y, DAI Y F. New Technology for Manufacturing and Measurement of Large and Middle-Scale Aspheric Surfaces [M]. Beijing: National Defense Industry Press, 2011. (in Chinese)

[11] 徐乐, 张春雷, 代雷, 等. 高精度非回转对称非球面加工方法研究[J]. 中国光学, 2016, 9(3): 364-370.

    XU L, ZHANG CH L, DAI L, et al..Research on manufacturing method of non-rotationally symmetrical aspheric surface with high accarucy [J]. Chinese Optics, 2016, 9(3): 364-370.

[12] MEHTA P K, REID P B. A mathematical model for optical smoothing prediction of high-spatial frequency surface errors [J]. SPIE, 1999, 3786: 447-459.

[13] TUELL M T, BURGE J H, ANDERSON B. Aspheric optics: smoothing the ripples with semi-flexible tools [J]. Optical Engineering, 2002, 41(7): 2002.

[14] NIE X Q, LI SH Y, SHI F, et al..Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors [J]. Applied Optics, 2014, 53(6): 1020-1027.

[15] NIE X Q, LI SH Y, SHI F, et al.. Control of mid-spatial frequency errors considering the pad groove feature in smoothing polishing process [J]. Applied Optics, 2014, 53(28): 6332-6339.

[16] 彭利荣, 马占龙, 王高文, 等. 超薄光学元件精密加工关键技术[J]. 中国光学, 2015, 8(6): 964-970.

    PENG L R, MA ZH L, WANG G W, et al..Key technology of ultra-thin optical element precision manufacture [J]. Chinese Optics, 2015, 8(6): 964-970.(in Chinese)

[17] SU D Q, MIAO E L, SUI Y X, et al.. Absolute surface figure testing by shift-rotation method using Zernike polynomials [J]. Optics Letters, 2012, 37(15): 3198-3200.

[18] 杨智.确定性光学加工频带误差的评价与分析方法研究[D].长沙: 国防科技大学, 2008.

    YANG ZH. Study on Specification and Analysis of Frequency Band Errors on Deterministic Optical Machining [D]. Changsha: National University of Defense Technology, 2008. (in Chinese)

[19] 许伟才.浸没式投影物镜的光学设计与像质补偿[D]. 北京: 中国科学院研究生院, 2011.

    XU W C. Optical Design and Imaging Performance Compensation for the Lithographic Lens [D].Beijing: Chinese Academy of Sciences, 2011. (in Chinese)

张春雷, 徐乐, 刘健, 马占龙, 王飞, 谷永强, 代雷, 彭石军. 全频段亚纳米精度氟化钙材料加工[J]. 光学 精密工程, 2016, 24(11): 2636. ZHANG Chun-lei, XU Le, LIU Jian, MA Zhan-long, WANG Fei, GU Yong-qiang, DAI Lei, PENG Shi-jun. Sub-nanometer precision optical fabrication of CaF2 materials[J]. Optics and Precision Engineering, 2016, 24(11): 2636.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!