红外与激光工程, 2015, 44 (11): 3167, 网络出版: 2016-01-26   

微光视频器件及其技术的进展

Progress of low level light video technology
作者单位
1 微光夜视技术重点实验室,陕西 西安 710065
2 北京理工大学光电学院光电成像技术与系统教育部重点实验室,北京 100081
3 北京洪润康光电工程技术有限公司,北京 100085
摘要
微光夜视技术作为当今拓展人眼夜间视觉感知的主要技术之一,在**和民用领域都有广泛的应用。随着数字图像处理技术的发展,微光视频器件为通过图像处理进一步提升夜视图像质量,为与红外热成像的图像信息融合,为提高夜间对目标探测/识别和场景理解能力等方面提供了广泛空间,成为当前国内外夜视技术发展的重要方向之一。论文综述了微光视频器件发展,分析了电真空+固体微光视频成像器件(如像增强CCD/CMOS(ICCD/ICMOS)器件、电子轰击EBCCD/EBCMOS器件等)、全固体微光视频成像器件(如电子倍增CCD器件、超低照度CMOS器件等)的特点和发展趋势,并结合法国PHOTONIS公司的LYNX计划,对微光夜视技术的发展进行了分析和讨论。
Abstract
As one of the key technologies to expand human eye′s night visual perception, low level light (LLL) night vision technology has wide application in military and civilian fields. With the development of digital image processing technology, LLL video devices not only improve the night vision image quality through the image processing, but also provide a broad space for image information fusion with the infrared thermal imaging and the improvement of nighttime target detection/recognition, scene understanding ability and so on, become one of the important directions of current night vision technology both at home and abroad. This paper reviews the development of LLL video devices, analyzes the characteristics and development trends of electronic vacuum + solid LLL video imaging devices(such as ICCD/ICMOS, Electron Bombardment EBCCD/EBCMOS, etc.), all solid-state LLL video imaging devices (such as electron multiplying EMCCD, Extreme Low-Light CMOS, etc.), analyzes and discusses the development of LLL night vision technology combined with PHOTONIS LYNX program.
参考文献

[1] Zhang Jingxian, Li Yudan, Jin Weiqi. Imaging Techneque of LLL and Laser[M]. Beijing: Beijing University of Science and Technology Press, 1995. (in Chinese)

[2] Zhou Liwei. Review and Development of Low-light Night Vision Technology[M]//Progress of Modern Optics and Photonics-Celebrate Academician Wang Daheng Engaged in Scientific and Technological Activities 65th Anniversary Album, Tianjin: Tianjin Science and Technology Press, 2003: 316-339.(in Chinese)

[3] Boyd F, Chiao L. Low-light-level CMOS image sensor for digitally fused night vision systems[C]//SPIE, 2009, 7298: 729849.

[4] Jin Weiqi, Liu Guangrong, Wang Xia, et al. Image intensifier′ s progress and division of generations [J]. Optical Technique, 2004, 30(4): 460-463. (in Chinese)

[5] Guo Hui, Xiang Shiming, Tian Minqiang. A review of the development of low-light night vision technology[J]. Infrared Technology, 2013, 35(2): 63-68. (in Chinese)

[6] Tian Jinsheng. New development of low light level imaging sensor technology[J]. Infrared Technology, 2013, 35(9): 527-534. (in Chinese)

[7] Yao Libin. Low-light-level CMOS image sensor technique[J]. Infrared Technology, 2013, 35(3): 125-132. (in Chinese)

[8] Intevac Photonics. E3010M Digital Image Intensifier (DI2) [J/OL]. http://www.intevac.com.

[9] Photonis. Photonis Nocturn XL[J/OL]. http://www.photonis.com.

[10] Franck Robert. Photonis Advanced Digital solutions for extreme low light applications [J/OL]. http://www.photonis.com.

[11] Pralle M U, Carey J E, Homayoon H. IR CMOS: Infrared enhanced silicon imaging[C]//SPIE, 2013, 8704: 870407.

[12] Brigates INC,BG0635 0605 1/2inch CMOS Digital image sensor[J/OL]. http://www.brigates.com

[13] Gpixel INC, Gsense series: Gsense 400 [J/OL]. http://www.gpixelinc.com.

[14] Cao Yang, Jin Weiqi, Wang Xia, et al. Development in shortwave infrared focal plane array and application[J]. Infrared Technology, 2009, 31(2): 62-68. (in Chinese)

[15] Shi Yanli, Hu Rui, Zhang Weifeng, et al. Progress of InGaAs solid-state low-light devices[J]. Infrared Technology, 2013, 35(2): 81-88. (in Chinese)

[16] Shi Yanli, Lv Yuzeng, Zhao Lusheng, et al. High performance solid-state and digitalized InxGa1-xAs low-light night vision devices[J]. Infrared and Laser Engineering, 2013, 42(12): 3367-3372. (in Chinese)

[17] Guo hui, Peng Chaxia, Jiao Gangcheng, et al. Shortwave-infrared-extended image intensifier technology and its application[J]. Journal of Applied Optic, 2014, 35(3): 478-483. (in Chinese)

[18] George M. Electron bombarded back-illuminated CCD sensors for low light level imaging applications[C]//SPIE, 1995, 2415: 211-235.

[19] Song Bo, Xu Chao, Jin Weiqi, et al. The analysis of low SNR video denoising algorithms using temporal domain and spatial domain mixture methods [J]. Infrared Technology, 2011, 33(8): 489-494. (in Chinese)

[20] Luo Yuan, Wang Lingxue, Jin Weiqi, et al. Developments of image processing algorithms and systems for LLL(Vis.)/IR color night vision[J]. Infrared Technology, 2010, 32(6): 337-344. (in Chinese)

[21] Endre Repasi, Peter Lutzmanna, Ove Steinvallb, et al. Mono-and Bi-Static SWIR range-gated imaging experiments for ground applications[C]//SPIE, 2008, 7114: 71140D-1-19.

[22] Endre Repasi, Peter Lutzmann, Ove Steinvall, et al. Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations[J]. Applied Optics, 2009, 48(31): 5956-5969.

金伟其, 陶禹, 石峰, 李本强. 微光视频器件及其技术的进展[J]. 红外与激光工程, 2015, 44(11): 3167. Jin Weiqi, Tao Yu, Shi Feng, Li Benqiang. Progress of low level light video technology[J]. Infrared and Laser Engineering, 2015, 44(11): 3167.

本文已被 20 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!