红外与激光工程, 2020, 49 (3): 0303007, 网络出版: 2020-04-22   

结构光三维传感器测量网相关技术 下载: 645次

Techniques of structured light measurement network with 3D sensors
作者单位
1 深圳大学 物理与光电工程学院,广东 深圳 518060
2 深圳市易尚展示股份有限公司,广东 深圳 518100
3 山东大学 信息科学与工程学院,山东 青岛 266237
引用该论文

刘晓利, 何懂, 陈海龙, 蔡泽伟, 殷永凯, 彭翔. 结构光三维传感器测量网相关技术[J]. 红外与激光工程, 2020, 49(3): 0303007.

Xiaoli Liu, Dong He, Hailong Chen, Zewei Cai, Yongkai Yin, Xiang Peng. Techniques of structured light measurement network with 3D sensors[J]. Infrared and Laser Engineering, 2020, 49(3): 0303007.

参考文献

[1] Sansoni G, Trebeschi M, Docchio F. State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation[J]. Sensors, 2009, 9(1): 568-601.

[2] Schwenke H, Neuschaefer-Rube U, Pfeifer T. Optical methods for dimensional metrology in production engineering[J]. CIRP Annals-Manufacturing Technology, 2002, 51(2): 685-699.

[3] Blais F. Review of 20 years of range sensor development[J]. Journal of Electronic Imaging, 2004, 13(1): 231-240.

[4] Daanen H A M, TerHaar F B. 3D whole body scanners revisited[J]. Displays, 2013, 34: 270-275.

[5] Tong J, Zhou J, Liu L. Scanning 3D full human bodies using kinects[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(4): 643-650.

[6] Geng J. Structured-light 3D surface imaging: A tutorial[J]. Advances in Optics and Photonics, 2011, 3(2): 128-160.

[7] He Jinying, Liu Xiaoli, Peng Xiang. Integer pixel correlation searching for three-dimensional digital speckle based on gray constraint[J]. Chinese Journal of Lasers, 2017, 44(4): 150-157.

[8] Tang Q, Liu C, Cai Z. An improved spatiotemporal correlation method for high- accuracy random speckle 3D reconstruction[J]. Optics and Lasers in Engineering, 2018, 110: 54-62.

[9] Zuo C, Tao T, Feng S. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second[J]. Optics and Lasers in Engineering, 2018, 102: 70-91.

[10] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-d object shapes[J]. Applied Optics, 1983, 22(24): 3977-3982.

[11] Zuo C, Feng S, Huang L. Phase shifting algorithms for fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 2018, 109: 23-59.

[12] Zhong J, Weng J. Spatial carrier-fringe pattern analysis by means of wavelet transform: Wavelet transform profilometry[J]. Applied Optics, 2004, 43(26): 4993-4998.

[13] Ma J, Wang Z, Pan B. Two-dimensional continuous wavelet transform for phase determination of complex interferograms[J]. Applied Optics, 2011, 50(16): 2425-2430.

[14] Sutton M A, Zhao M, Mcneill S R. Development and assessment of a single-image fringe projection method for dynamic applications[J]. Experimental Mechanics, 2001, 41(3): 205-217.

[15] Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry of 3-d diffuse objects[J]. Applied Optics, 1984, 23(18): 3105-3108.

[16] Peng J, Liu X, Deng D. Suppression of projector distortion in phase-measuring profilometry by projecting adaptive fringe patterns[J]. Optics Express, 2016, 24(19): 21846-21860.

[17] Pan J, Huang P S, Chiang F P. Color-coded binary fringe projection technique for 3-D shape measurement[J]. Optical Engineering, 2005, 44(2): 023606.

[18] Zhang Z, Towers C E, Towers D P. Time efficient color fringe projection system for simultaneous 3D shape and color using optimum 3-frequency selection[J]. Optics Express, 2006, 14(14): 6444-6455.

[19] Zuo C, Chen Q, Gu G. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection[J]. Optics and Lasers in Engineering, 2013, 51: 953-960.

[20] Lei S, Zhang S. Flexible 3-D shape measurement using projector defocusing[J]. Optics Letters, 2009, 34(20): 3080-3082.

[21] Heist S, Mann A, Kühmstedt P. Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement[J]. Optical Engineering, 2014, 53(11): 112208.

[22] Guan Y, Yin Y, Li A. Dynamic 3D imaging based on acousto-optic heterodyne fringe interferometry[J]. Optics Letters, 2014, 39(12): 3678-3681.

[23] Du H, Wang Z. Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system[J]. Optics Letters, 2007, 32(16): 2438-2440.

[24] Huang Z, Xi J, Yu Y. Improved geometrical model of fringe projection profilometry[J]. Optics Express, 2014, 22(26): 32220-32232.

[25] Zhang Z, Ma H, Zhang S. Simple calibration of a phase-based 3D imaging system based on uneven fringe projection[J]. Optics Letters, 2011, 36(5): 627-629.

[26] Asundi A, Wensen Z. Unified calibration technique and its applications in optical triangular profilometry[J]. Applied Optics, 1999, 38(16): 3556-3561.

[27] Huang L, Chua P S K, Asundi A. Least-squares calibration method for fringe projection profilometry considering camera lens distortion[J]. Applied Optics, 2010, 49(9): 1539-1548.

[28] Léandry I, Brèque C, Valle V. Calibration of a structured-light projection system: development to large dimension objects[J]. Optics and Lasers in Engineering, 2012, 50(3): 373-379.

[29] Legarda-Sáenz R, Bothe T, Jüptner W P. Accurate procedure for the calibration of a structured light system[J]. Optical Engineering, 2004, 43(2): 464-471.

[30] Yin Y, Peng X, Li A. Calibration of fringe projection profilometry with bundle adjustment strategy[J]. Optics Letters, 2012, 37(4): 542-544.

[31] Zhang S, Huang P S. Novel method for structured light system calibration[J]. Optical Engineering, 2006, 45(8): 083601.

[32] Chen X, Xi J, Jin Y. Accurate calibration for a camera-projector measurement system based on structured light projection[J]. Optics and Lasers in Engineering, 2009, 47(3-4): 310-319.

[33] Chen R, Xu J, Chen H. Accurate calibration method for camera and projector in fringe patterns measurement system[J]. Applied Optics, 2016, 55(16): 4293-4300.

[34] Vargas J, Quiroga J A, Terron-Lopez M J. Flexible calibration procedure for fringe projection profilometry[J]. Optical Engineering, 2007, 46(2): 023601.

[35] Huang J, Wu Q. A new reconstruction method based on fringe projection of three-dimensional measuring system[J]. Optics and Lasers in Engineering, 2014, 52: 115-122.

[36] Cai Z, Liu X, Li A. Phase-3D mapping method developed from back-projection stereovision model for fringe projection profilometry[J]. Optics Express, 2017, 25(2): 1262-1277.

[37] Guo J, Peng X, Li A. Automatic and rapid whole-body 3D shape measurement based on multinode 3D sensing and speckle projection[J]. Applied Optics, 2017, 56(31): 8759-8768.

[38] Peng X, Liu X, Yin Y. Optical measurement network for large-scale and shell-like objects[J]. Optics Letters, 2011, 36(2): 157-159.

[39] Liu X, Peng X, Chen H. Strategy for automatic and complete three-dimensional optical digitization[J]. Optics Letters, 2012, 37(15): 3126-3128.

[40] Liu Xiaoli, Peng Xiang, Yin Yongkai. 3D auto-inspection for large thin-wall object[J]. Acta Optica Sinica, 2011, 31(3): 0312006.

[41] Chen S Y, Li Y F. Automatic sensor placement for model-based robot vision[J]. Part B: Cybernetics, IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(1): 393-408.

[42] Tarabanis K A, Allen P K, Tsai R Y. A survey of sensor planning in computer vision[J]. IEEE Transactions on Robotics and Automation, 1995, 11(1): 86-104.

[43] Scott W R. Model-based view planning[J]. Machine Vision and Applications, 2009, 20(1): 47-69.

[44] Liu X, Cai Z, Yin Y. Calibration of fringe projection profilometry using an inaccurate 2D reference target[J]. Optics and Lasers in Engineering, 2017, 89: 131-137.

[45] He D, Liu X, Peng X. Eccentricity error identification and compensation for high-accuracy 3D optical measurement[J]. Measurement Science and Technology, 2013, 24(7): 075402.

[46] Yin Yongkai, Liu Xiaoli, Li Ameng. Sub-pixel location of circle target and its application[J]. Infrared and Laser Engineering, 2008, 37(4): 47-50.

[47] Yin Y, Peng X, Liu X. Calibration strategy of optical measurement network for large-scale and shell-like objects[J]. Optics Communications, 2012, 285(8): 2048-2056.

[48] Besl P J, McKay N D. A method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.

[49] Salvi J, Matabosch C, Fofi D. A review of recent range image registration methods with accuracy evaluation[J]. Image and Vision Computing, 2007, 25(5): 578-596.

[50] Liu Xiaoli. Key techniques in multiple range images modeling [D]. Tianjin: Tianjin University, 2008. (in Chinese)

[51] Liu X, Peng X, He D, et al. Automatic 3D imaging modeling system with col infmation f cultural heritage digitization [C]Fringe 2013, 2013: 821826.

[52] Li A, Peng X, Yin Y. Optical 3D digitizer for photorealistic imaging of movable cultural heritage[J]. Acta Photonica Sinica, 2013, 42(12): 1421-1429.

[53] Liu X, Peng X, Yin Y. Generation of photorealistic 3D image using optical digitizer[J]. Applied Optics, 2012, 51(7): 1304-1311.

[54] Liu Xiaoli, Peng Xiang, Yin Yongkai. A method for global registration of range data combined with markers[J]. Acta Optica Sinica, 2009, 29(4): 1010-1014.

[55] Liu X, He X, Liu Z, et al. Automatic registration of range images combined with the system calibration global ICP [C]SPIE, 2012: 84991X.

[56] Liu Xiaoli, Peng Xiang, Yin Yongkai. Introduction and comparison of range image registration methods[J]. Laser & Optoelectronics Progress, 2010, 47(12): 121001.

[57] Liu Xiaoli, Peng Xiang, Li Ameng. Range images registration combined with texture information[J]. Journal of Computer-aided Design & Computer Graphics, 2007, 19(3): 340-345.

[58] Liu Xingming, Liu Xiaoli, Yin Yongkai. Texture blending of 3D photo-realistic model[J]. Journal of Computer-aided Design & Computer Graphics, 2012, 24(11): 1440-1446.

[59] Liu X, Li A, Zhao X. Model-based optical metrology and visualization of 3-D complex objects[J]. Optoelectronics Letters, 2007, 3(2): 115-118.

[60] Liu Xiaoli, Peng Xiang, Li Ameng. Integration of multiple range images based on ray casting[J]. Journal of Computer-aided Design & Computer Graphics, 2007, 19(10): 1286-1291.

刘晓利, 何懂, 陈海龙, 蔡泽伟, 殷永凯, 彭翔. 结构光三维传感器测量网相关技术[J]. 红外与激光工程, 2020, 49(3): 0303007. Xiaoli Liu, Dong He, Hailong Chen, Zewei Cai, Yongkai Yin, Xiang Peng. Techniques of structured light measurement network with 3D sensors[J]. Infrared and Laser Engineering, 2020, 49(3): 0303007.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!