激光与光电子学进展, 2018, 55 (10): 101401, 网络出版: 2018-10-14   

基于锁相环的激光陀螺抖动机构频率跟踪技术 下载: 577次

Frequency Tracking Technology for Dither Mechanism of Laser Gyros Based on Phase Locked Loop
作者单位
1 贵州大学大数据与信息工程学院, 贵州 贵阳 550025
2 西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
3 西安现代控制技术研究所, 陕西 西安 710065
摘要
基于激光陀螺抖动机构谐振频率随温度等环境因素的变化会导致抖动偏频不稳定的现象, 研究了基于锁相环的激光陀螺抖动机构谐振频率跟踪技术。在对抖动机构和锁相环传递函数分析的基础上, 应用自动控制理论, 给出了锁相环频率跟踪精度、同步范围等性能指标与抖动控制参数的一般关系。结果表明, 增大锁相环开环增益能减小频率跟踪稳态误差, 同时将导致锁相环同步范围减小。采用低开环增益启动陀螺、再采用高开环增益跟踪抖动机构谐振频率, 能保证100 ms内自动跟踪陀螺谐振频率, 在-40 ℃ 到 70 ℃温度范围内抖动机构谐振频率跟踪精度优于0.015 Hz。
Abstract
The resonant frequency of dither mechanism of laser gyro varies with the temperature and other environmental factors, resulting in dither bias instability. The resonant frequency tracking technology of dither mechanism of laser gyro based on phase-locked loop is investigated. Based on the analysis of the transfer function of the dither mechanism and the phase-locked loop, the general relationship between the performance of the frequency tracking accuracy and the range of synchronization and the dither control parameters is worked out with the automatic control theory. The results show that the increase of the open-loop gain of phase-locked loop can reduce the steady-state error of frequency tracking and the synchronization range of phase-locked loop simultaneously. The low open-loop gain is adopted to initiate laser gyro, and then high-open loop gain is used to track frequency of dither mechanism. This strategy can guarantee the gyro resonance frequency being tracked automatically within 100 ms. The frequency tracking accuracy of the dither mechanism of a laser gyro machine based on phase-locked loop is better than 0.015 Hz with temperature ranging from -40 ℃ to 70 ℃.
参考文献

[1] 梁可, 李龙, 陈林峰, 等. 激光陀螺反射镜最佳透射率实验研究[J]. 中国激光, 2017, 44(4): 0401003.

    Liang K, Li L, Chen L F, et al. Experimental study on optimal transmittance of mirror in laser gyro[J]. Chinese Journal of Lasers, 2017, 44(4): 0401003.

[2] 马仰华, 于文东, 权冰心, 等. 腔长控制镜对激光陀螺动态特性的影响[J]. 中国激光, 2017, 44(6): 0601001.

    Ma Y H, Yu W D, Quan B X, et al. Influence of path length control mirror on dynamic stability of ring laser gyro[J]. Chinese Journal of Lasers, 2017, 44(6): 0601001.

[3] Chow W W, Geabanacloche J, Pedrotti L M, et al. The ring laser gyro[J]. Reviews of Modern Physics, 1985, 57(1): 61-104.

[4] Peshekhonov V G. Gyroscopic navigation systems: current status and prospects[J]. Gyroscopy and Navigation, 2011, 2(3): 111-118.

[5] 马家君, 蒋军彪, 刘健宁. 全反射棱镜式激光陀螺双纵模稳频技术[J]. 中国激光, 2014, 41(9): 0902011.

    Ma J J, Jiang J B, Liu J N. Frequency stabilization technique of total reflection prism laser gyros with double longitudinal modes[J]. Chinese Journal of Lasers, 2014, 41(9): 0902011.

[6] 马家君, 蒋军彪. 全反射棱镜式激光陀螺稳频特性研究[J]. 中国激光, 2015, 42(1): 0102002.

    Ma J J, Jiang J B. Research on the frequency stabilization properties of total reflection prism laser gyros[J]. Chinese Journal of Lasers, 2015, 42(1): 0102002.

[7] 马家君, 蒋军彪, 刘健宁. 全反射棱镜式激光陀螺自适应稳频技术[J]. 光学学报, 2015, 35(3): 0314002.

    Ma J J, Jiang J B, Liu J N. Adaptive frequency stabilization technique for total reflection prism laser gyros[J]. Acta Optica Sinica, 2015, 35(3): 0314002.

[8] 杨立溪. 惯性技术手册[M]. 北京: 中国宇航出版社, 2013: 12.

    Yang L X. Inertial technology manual[M]. Beijing: China Aerospace Press, 2013: 12.

[9] 陆志东. 非共面激光陀螺[M]. 北京: 航空工业出版社, 2014: 11-28.

    Lu Z D. Non-coplanar laser gyroscope[M]. Beijing: Aviation Industry Press, 2014: 11-28.

[10] Radina T V. Theory of frequency synchronization in a ring laser[J]. Physics Letters A, 2015, 379(36): 2140-2146.

[11] Hurst R B, Rabeendran N, Schreiber K U, et al. Correction of backscatter-induced systematic errors in ring laser gyroscopes[J]. Applied Optics, 2014, 53(31): 7610-7618.

[12] Li G, Wu W Q, Fan Z F, et al. Research of misalignment between dithered ring laser gyro angle rate input axis and dither axis[J]. Proceedings of SPIE, 2014, 9297: 92971X.

[13] Lü P, Liu J Y, Lai J Z, et al. Allan variance method for gyro noise analysis using weighted least square algorithm[J]. Optik, 2015, 126(20): 2529-2534.

[14] 宋锐, 汤建勋, 周健, 等. 抖动参数对机抖激光陀螺零偏稳定性与角随机游走的影响[J]. 光学学报, 2010, 30(8): 2290-2294.

    Song R, Tang J X, Zhou J, et al. Effects of dither parameters on null-shift stability and angle random walk of dithered laser gyro[J]. Acta Optica Sinica, 2010, 30(8): 2290-2294.

[15] 汤建勋. 机械抖动激光陀螺抖动偏频系统的研究与设计[D]. 长沙: 国防科技大学, 2000.

    Tang J X. Research and design for dither bias system of mechanically dithered ring laser gyroscopes[D]. Changsha: National University of Defense Technology, 2000.

[16] 李永明. 锁相环设计、仿真与应用[M]. 北京: 清华大学出版社, 2007: 4.

    Li Y M. Phase locked loop design, simulation and application[M]. Beijing: Tsinghua University Press, 2007: 4.

马家君, 谢泉, 田泽安, 刘健宁, 蒋军彪. 基于锁相环的激光陀螺抖动机构频率跟踪技术[J]. 激光与光电子学进展, 2018, 55(10): 101401. Ma Jiajun, Xie Quan, Tian Zean, Liu Jianning, Jiang Junbiao. Frequency Tracking Technology for Dither Mechanism of Laser Gyros Based on Phase Locked Loop[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101401.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!