红外与激光工程, 2018, 47 (9): 0917007, 网络出版: 2018-10-06   

激光陀螺捷联惯导系统的模观测标定方法

Calibration method for the laser gyro strapdown inertial navigation system based on norm-observation
作者单位
哈尔滨工业大学 空间控制与惯性技术研究中心, 黑龙江 哈尔滨 150001
摘要
为了减小转台误差对激光陀螺捷联惯组(SIMU)标定精度的影响, 采用模观测法设计了正二十面体-12点的位置和速率试验计划。首先, 利用在重力场下的12个静态位置标定加速度计的零偏、标度因子和安装误差矩阵; 然后, 采用外环角速率、中内环双轴翻滚至12点位置来标定陀螺的零偏、标度因子和安装误差矩阵; 最后, 利用SIMU框架坐标系为桥梁, 实现了加速度计和陀螺参数坐标系的统一。仿真分析表明: 该方法能有效抑制转台误差对SIMU标定结果的影响, 当转台各轴系垂直度误差为角秒级且角位置误差小于1′时, 加速度计和陀螺的标度因子相对误差和安装误差矩阵的标定误差均小于10-5, 加速度计零偏的标定误差小于10 ?滋g , 陀螺零偏的标定误差小于0.01(°)/h与测量噪声处于同一数量级。
Abstract
In order to reduce the influence of turntable′s errors on the calibration accuracy of SIMU, the position and the rate test plans of the regular icosahedrons-12 points were designed by using norm observation of the specific force and the angular velocity vectors. Firstly, the twelve static positions were utilized to calibrate the accelerometers′ biases, scale factors and mounting errors in the gravity field. Secondly, using single-axis rate and double-axis position mode, namely the outer axis of the three-axis turntable was working in angular rate mode, both the inner and the middle axes were in the twelve positions, the RLGs′ biases, scale factors and mounting errors were calibrated. At the same time, unification of the accelerometer and the gyro parameter coordinate systems was realized by using the SIMU frame coordinate system. Finally, simulation analysis shows that this method can effectively suppress the influence of turntable′s errors on the calibration results of SIMU, the relative calibration errors of the scale factors of the accelerometers′ and the gyros′, and the calibration errors of the installation error matrix are less than 10-5, the calibration errors of accelerometer biases are less than 10 ?滋g, the calibration errors of gyro biases are less than 0.01(°)/h which are in the same order of magnitude of the measurement noises, in the situation that perpendicularities between the turntable’s adjacent axis lines are at the arc second level and that angular position errors are less than 1′.
参考文献

[1] 钟明飞, 汤建勋, 江奇渊, 等. 振动条件下激光陀螺捷联惯导系统的圆锥算法研究[J]. 红外与激光工程, 2014, 43(8):2626-2630.

    Zhong Mingfei, Tang Jianxun, Jiang Qiyuan, et al. Coning algorithm of laser gyro strapdown inertial navigation system in vibrating condition[J]. Infrared and Laser Engineering, 2014, 43(8): 2626-2630. (in Chinese)

[2] Xu Y, Wang Y, Su Y, et al. Research on the calibration method of micro inertial measurement unit for engineering application[J]. Journal of Sensors, 2016(1): 9108197.

[3] 卜凡伟. 捷联惯性组合的测试与校准[D]. 哈尔滨: 哈尔滨工业大学, 2011: 15-24.

    Bu Fanwei. Strapdown inertial measurement unit of test and calibration[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese)

[4] 于海龙, 吕信明, 汤建勋,等. 激光捷联惯导系统高阶误差模型的建立与分析[J]. 红外与激光工程, 2013, 42(9):2375-2379.

    Yu Hailong, Lv Xinming, Tang Jianxun, et al. Establishment and analysis of high- order error model of laser gyro SINS[J]. Infrared and Laser Engineering, 2013, 42(9): 2375-2379. (in Chinese)

[5] Cai Q, Yang G, Song N, et al. Systematic calibration for ultra-high accuracy inertial measurement units[J]. Sensors, 2016, 16(6): 940-956.

[6] 董春梅, 任顺清, 陈希军. 基于三轴转台误差分析的IMU标定方法[J]. 系统工程与电子技术, 2016, 38(4): 895-901.

    Dong Chunmei, Ren Shunqing, Chen Xijun. IMU calibration method based on analysis for the errors of three-axis turntable[J]. Systems Engineering and Electronics, 2016, 38(4): 895-901. (in Chinese)

[7] Pan J Y, Zhang C X, Cai Q Z. An accurate calibration method for accelerometer nonlinear scale factor on a low-cost three-axis turntable[J]. Measurement Science and Technology, 2014, 25(2): 2-7.

[8] Zhang Q, Wang L, Liu Z, et al. An accurate calibration method based on velocity in a rotational inertial navigation system[J]. Sensors, 2015, 15(8): 18443-18458.

[9] 杜海龙, 张荣辉, 刘平, 等. 捷联惯导系统姿态解算模块的实现[J]. 光学 精密工程, 2008, 16(10): 1956-1962.

    Du Hailong, Zhang Ronghui, Liu Ping, et al. Realization of attitude algorithm module in strapdown inertial guidance system[J]. Optics and Precision Engineering, 2008, 16(10):1956-1962. (in Chinese)

[10] Xu Y, Zhu X, Su Y. A novel network calibration method for inertial measurement units[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2014, 229(7): 1336-1348.

[11] Zheng Z, Han S, Zheng K. An eight-position self-calibration method for a dual-axis rotational inertial navigation system[J]. Sensors & Actuators A Physical, 2015, 232: 39-48.

[12] 杨管金子, 李建辰, 黄海,等. 基于遗传算法的加速度计免转台标定方法[J]. 中国惯性技术学报, 2017, 25(1): 119-123.

    Yang Guanjinzi, Li Jianchen, Huang Hai, et al. Non-turntable calibration method for three-accelerometer based on genetic algorithm[J]. Journal of Chinese Inertial Technology, 2017, 25(1): 119-123. (in Chinese)

[13] Rohac J, Sipos M, Simanek J. Calibration of low-cost triaxial inertial sensors[J]. IEEE Instrumentation & Measurement Magazine, 2015, 18(6): 32-38.

[14] Wang B, Ren Q, Deng Z, et al. A self- calibration method for nonorthogonal angles between gimbals of rotational inertial navigation system [J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2353-2362.

[15] L 觟tters J C, Schipper J, Veltink P H, et al. Procedure for in-use calibration of triaxial accelerometers in medical applications[J]. Journal of Applied Behavior Analysis, 1998, 68(1-3): 221-228.

[16] Shin E H. Accuracy improvement of low cost ins/gps for land applications [D]. Calgary: University of Calgary, 2001.

[17] 戴邵武, 王克红, 戴洪德. 一种基于模观测的MIMU标定新方法[J]. 自动化与仪器仪表, 2014(11): 102-106.

    Dai Shaowu, Wang Kehong, Dai Hongde. A new calibration method for MIMU on norm Observation[J]. Automation Instrumentation, 2014(11): 102-106. (in Chinese)

[18] Syed Z F, Aggarwal P, Goodall C, et al. A new multi-position calibration method for MEMS inertial navigation systems[J]. Measurement Science and Technology, 2007, 18(7): 1897-1907.

[19] 张红良, 武元新, 练军想, 等. 基于转台误差分析的高精度惯测组合标定编排改进[J]. 中国惯性技术学报, 2010, 18(1): 129-134.

    Zhang Hongliang, Wu Yuanxin, Lian Junxiang, et al. Improved calibration scheme for high precision IMU’s based on turntable error analysis[J]. Journal of Chinese Inertial Technology, 2010, 18(1): 129-134. (in Chinese)

[20] Zhang H, Wu Y, Wu W, et al. Improved multi-position calibration for inertial measurement units[J]. Measurement Science & Technology, 2010, 21(1): 015107.

[21] 王卫阳.惯性仪表和系统误差模型辨识理论及应用研究[D]. 哈尔滨: 哈尔滨工业大学, 1997.

    Wang Weiyang. Study on identification theory of inertial sensor and system error model and its application[D]. Harbin: Harbin Institute of Technology, 1997. (in Chinese)

董春梅, 任顺清, 陈希军, 王常虹. 激光陀螺捷联惯导系统的模观测标定方法[J]. 红外与激光工程, 2018, 47(9): 0917007. Dong Chunmei, Ren Shunqing, Chen Xijun, Wang Changhong. Calibration method for the laser gyro strapdown inertial navigation system based on norm-observation[J]. Infrared and Laser Engineering, 2018, 47(9): 0917007.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!