量子电子学报, 2016, 33 (5): 524, 网络出版: 2016-10-21   

大气中草酸根水合物光电子能谱与红外谱理论研究

Theoretical investigation of photoelectron and infrared spectroscopy of hydrated oxalate in atmosphere
作者单位
中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
引用该论文

刘议蓉, 黄腾, 姜帅, 张杨, 彭秀球, 黄伟, 张为俊. 大气中草酸根水合物光电子能谱与红外谱理论研究[J]. 量子电子学报, 2016, 33(5): 524.

LIU Yirong, HUANG Teng, JIANG Shuai, ZHANG Yang, PENG Xiuqiu, HUANG Wei, ZHANG Weijun. Theoretical investigation of photoelectron and infrared spectroscopy of hydrated oxalate in atmosphere[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 524.

参考文献

[1] Lohmann U, Feichter J. Global indirect aerosol effects: A review[J]. Atmos. Chem. Phys., 2005, 5(3): 715-737.

[2] Nel A. Air pollution-related illness: Effects of particles[J]. Science, 2005, 308(5723): 804-806.

[3] Sarigiannis D Α, Karakitsios S P, Kermenidou M V. Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities[J]. Sci. Total. Environ., 2015, 524: 319-330.

[4] Liu M M, Wang D, Zhao Y, et al. Effects of outdoor and indoor air pollution on respiratory health of Chinese children from 50 kindergartens[J]. J. Epidemiol., 2013, 23(4): 280-287.

[5] Gu J, Kraus U, et al. Personal day-time exposure to ultrafine particles in different microenvironments[J]. Int. J. Hyg. Envir. Heal., 2015, 218(2): 188-195.

[6] Weigel R, Borrmann S, Kazil J, et al. Insitu observations of new particle formation in the tropical upper troposphere: The role of clouds and the nucleation mechanism[J]. Atmos. Chem. Phys., 2011, 11(18): 9983-10010.

[7] Mirme S, Mirme A, Minikin A, et al. Atmospheric sub-3 nm particles at high altitudes[J]. Atmos. Chem. Phys., 2010, 10(2): 437-451.

[8] Wang D, Guo H, Cheung K, et al. Observation of nucleation mode particle burst and new particle formation events at an urban site in Hong Kong[J]. Atmos. Environ., 2014, 99: 196-205.

[9] Westervelt D, Pierce J, Riipinen I, et al. Formation and growth of nucleated particles into cloud condensation nuclei: Model-measurement comparison[J]. Atmos. Chem. Phys., 2013, 13(15): 7645-7663.

[10] Saxton J, Lewis A, Kettlewell J, et al. Isoprene and monoterpene measurements in a secondary forest in northern Benin[J]. Atmos. Chem. Phys., 2007, 7(15): 4095-4106.

[11] Schwartz R, Russell L, Sjostedt S, et al. Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products[J]. Atmos. Chem. Phys., 2010, 10(11): 5075-5088.

[12] Shantz N, Leaitch W, Phinney L, et al. The effect of organic compounds on the growth rate of cloud droplets in marine and forest settings[J]. Atmos. Chem. Phys., 2008, 8(19): 5869-5887.

[13] Yao X, Zhang L. Sulfate formation in atmospheric ultrafine particles at Canadian inland and coastal rural environments[J]. J. Geophys. Res., 2011, 11(D10): 609-619.

[14] Crilley L R, Jayaratne E R, Ayoko G A, et al. Observations on the formation, growth and chemical composition of aerosols in an urban environment[J]. Environ. Sci. Technol., 2014, 48(12): 6588-6596.

[15] Stanier C O, Khlystov A Y, Pandis S N. Nucleation events during the Pittsburgh air quality study: Description and relation to key meteorological, gas phase, and aerosol parameters[J]. Aerosol. Sci. Tech., 2004, 38(1): 253-264.

[16] Brock C, Cozic J, Bahreini R, et al. Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project[J]. Atmos. Chem. Phys., 2011, 11(6): 2423-2453.

[17] Lin Xiaoxiao, Liu Yirong, Yan Lili, et al. Advances in atmospheric Criegee intermediates detection methods[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 32(2): 129-13(in Chinese).

[18] Wen H, Liu Y R, Huang T, et al. Observation of linear to planar structural transition in sulfur-doped gold clusters: AuxS- (x=2~5)[J]. J. Chem. Phys., 2013, 138(17): 174303.

[19] Yu F, Turco R P. Ultrafine aerosol formation via ion-mediated nucleation[J]. Geophys. Res. Lett., 2000, 27(6): 883-886.

[20] Wang X B, Yang X, Nicholas J B, et al. Photodetachment of hydrated oxalate dianions in the gas phase, C2O2-4(H2O)n (n=3~40): From solvated clusters to nanodroplet[J]. J. Chem. Phys., 2003, 119(7): 3631-3640.

[21] Rosas-García V M, del Carmen Sáenz-Tavera I, Rodríguez-Herrera V J, et al. Microsolvation and hydration enthalpies of CaC2O4(H2O)n (n=0~16) and C2O2-4(H2O)n(n=0~14): an ab initio study[J]. J. Mol. Model., 2012, 19(4): 1459-1471.

[22] Gao B, Liu Z F. First principles study on the solvation and structure of C2O2-4(H2O)n, n=6~12[J]. J. Phys. Chem. A, 2005, 109(40): 9104-9111.

[23] Weber K H, Morales F J, Tao F M. Theoretical study on the structure and stabilities of molecular clusters of oxalic acid with water[J]. J. Phys. Chem. A, 2012, 11(47): 11601-11617.

[24] Wales D J, Doye J P. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms[J]. J. Phys. Chem. A, 1997, 101(28): 5111-5116.

[25] Li Z, Scheraga H A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding[J]. Proc. Natl. Acad. Sci. USA, 1987, 84(19): 6611-6615.

[26] Delley B. An all-electronnumerical-method for solving the local density functional for polyatomic-molecules[J]. J. Chem. Phys., 1990, 92(1): 508-517.

刘议蓉, 黄腾, 姜帅, 张杨, 彭秀球, 黄伟, 张为俊. 大气中草酸根水合物光电子能谱与红外谱理论研究[J]. 量子电子学报, 2016, 33(5): 524. LIU Yirong, HUANG Teng, JIANG Shuai, ZHANG Yang, PENG Xiuqiu, HUANG Wei, ZHANG Weijun. Theoretical investigation of photoelectron and infrared spectroscopy of hydrated oxalate in atmosphere[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 524.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!