量子电子学报, 2016, 33 (5): 524, 网络出版: 2016-10-21   

大气中草酸根水合物光电子能谱与红外谱理论研究

Theoretical investigation of photoelectron and infrared spectroscopy of hydrated oxalate in atmosphere
作者单位
中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
摘要
离子诱导成核是大气中重要的成核类型,也是大气中新粒子的主要来源之一,它能对大气中 新粒子的形成产生重要影响。通过草酸根水合物的光电子能谱和红外谱模拟发现水分子的个数会影 响团簇的稳定性。相对于C2O2-4(H2O)3团簇分子,第4个水分子的加入能够有效地稳定草酸根分子上2个发生库仑排斥的电子。 草酸根水合物团簇中水分子之间的相互作用弱于水与草酸根之间的相互作用,红外谱的模拟表明水 分子的个数对草酸根的核结构影响较小。
Abstract
Ion-induced nucleation is a very important nucleation type, and it is also one of the main sources of new particles in atmosphere. It has a significant impact on the formation of new particles in atmosphere. By simulation of photoelectron and infrared spectroscopy of hydrated oxalate, it’s found that number of water molecules can affect the stability of cluster molecules. With respect to C2O2-4 (H2O)3 cluster, the addition of the fourth water molecule can effectively stabilize the two electrons with Coulomb repulsion on the oxalate molecule. The interaction between water molecules in oxalate hydrate clusters is weaker than that between water and oxalate molecule in hydrated. Simulation of infrared spectroscopy shows that the number of water molecules has less effect on the nuclear structure of oxalate.
参考文献

[1] Lohmann U, Feichter J. Global indirect aerosol effects: A review[J]. Atmos. Chem. Phys., 2005, 5(3): 715-737.

[2] Nel A. Air pollution-related illness: Effects of particles[J]. Science, 2005, 308(5723): 804-806.

[3] Sarigiannis D Α, Karakitsios S P, Kermenidou M V. Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities[J]. Sci. Total. Environ., 2015, 524: 319-330.

[4] Liu M M, Wang D, Zhao Y, et al. Effects of outdoor and indoor air pollution on respiratory health of Chinese children from 50 kindergartens[J]. J. Epidemiol., 2013, 23(4): 280-287.

[5] Gu J, Kraus U, et al. Personal day-time exposure to ultrafine particles in different microenvironments[J]. Int. J. Hyg. Envir. Heal., 2015, 218(2): 188-195.

[6] Weigel R, Borrmann S, Kazil J, et al. Insitu observations of new particle formation in the tropical upper troposphere: The role of clouds and the nucleation mechanism[J]. Atmos. Chem. Phys., 2011, 11(18): 9983-10010.

[7] Mirme S, Mirme A, Minikin A, et al. Atmospheric sub-3 nm particles at high altitudes[J]. Atmos. Chem. Phys., 2010, 10(2): 437-451.

[8] Wang D, Guo H, Cheung K, et al. Observation of nucleation mode particle burst and new particle formation events at an urban site in Hong Kong[J]. Atmos. Environ., 2014, 99: 196-205.

[9] Westervelt D, Pierce J, Riipinen I, et al. Formation and growth of nucleated particles into cloud condensation nuclei: Model-measurement comparison[J]. Atmos. Chem. Phys., 2013, 13(15): 7645-7663.

[10] Saxton J, Lewis A, Kettlewell J, et al. Isoprene and monoterpene measurements in a secondary forest in northern Benin[J]. Atmos. Chem. Phys., 2007, 7(15): 4095-4106.

[11] Schwartz R, Russell L, Sjostedt S, et al. Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products[J]. Atmos. Chem. Phys., 2010, 10(11): 5075-5088.

[12] Shantz N, Leaitch W, Phinney L, et al. The effect of organic compounds on the growth rate of cloud droplets in marine and forest settings[J]. Atmos. Chem. Phys., 2008, 8(19): 5869-5887.

[13] Yao X, Zhang L. Sulfate formation in atmospheric ultrafine particles at Canadian inland and coastal rural environments[J]. J. Geophys. Res., 2011, 11(D10): 609-619.

[14] Crilley L R, Jayaratne E R, Ayoko G A, et al. Observations on the formation, growth and chemical composition of aerosols in an urban environment[J]. Environ. Sci. Technol., 2014, 48(12): 6588-6596.

[15] Stanier C O, Khlystov A Y, Pandis S N. Nucleation events during the Pittsburgh air quality study: Description and relation to key meteorological, gas phase, and aerosol parameters[J]. Aerosol. Sci. Tech., 2004, 38(1): 253-264.

[16] Brock C, Cozic J, Bahreini R, et al. Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project[J]. Atmos. Chem. Phys., 2011, 11(6): 2423-2453.

[17] Lin Xiaoxiao, Liu Yirong, Yan Lili, et al. Advances in atmospheric Criegee intermediates detection methods[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 32(2): 129-13(in Chinese).

[18] Wen H, Liu Y R, Huang T, et al. Observation of linear to planar structural transition in sulfur-doped gold clusters: AuxS- (x=2~5)[J]. J. Chem. Phys., 2013, 138(17): 174303.

[19] Yu F, Turco R P. Ultrafine aerosol formation via ion-mediated nucleation[J]. Geophys. Res. Lett., 2000, 27(6): 883-886.

[20] Wang X B, Yang X, Nicholas J B, et al. Photodetachment of hydrated oxalate dianions in the gas phase, C2O2-4(H2O)n (n=3~40): From solvated clusters to nanodroplet[J]. J. Chem. Phys., 2003, 119(7): 3631-3640.

[21] Rosas-García V M, del Carmen Sáenz-Tavera I, Rodríguez-Herrera V J, et al. Microsolvation and hydration enthalpies of CaC2O4(H2O)n (n=0~16) and C2O2-4(H2O)n(n=0~14): an ab initio study[J]. J. Mol. Model., 2012, 19(4): 1459-1471.

[22] Gao B, Liu Z F. First principles study on the solvation and structure of C2O2-4(H2O)n, n=6~12[J]. J. Phys. Chem. A, 2005, 109(40): 9104-9111.

[23] Weber K H, Morales F J, Tao F M. Theoretical study on the structure and stabilities of molecular clusters of oxalic acid with water[J]. J. Phys. Chem. A, 2012, 11(47): 11601-11617.

[24] Wales D J, Doye J P. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms[J]. J. Phys. Chem. A, 1997, 101(28): 5111-5116.

[25] Li Z, Scheraga H A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding[J]. Proc. Natl. Acad. Sci. USA, 1987, 84(19): 6611-6615.

[26] Delley B. An all-electronnumerical-method for solving the local density functional for polyatomic-molecules[J]. J. Chem. Phys., 1990, 92(1): 508-517.

刘议蓉, 黄腾, 姜帅, 张杨, 彭秀球, 黄伟, 张为俊. 大气中草酸根水合物光电子能谱与红外谱理论研究[J]. 量子电子学报, 2016, 33(5): 524. LIU Yirong, HUANG Teng, JIANG Shuai, ZHANG Yang, PENG Xiuqiu, HUANG Wei, ZHANG Weijun. Theoretical investigation of photoelectron and infrared spectroscopy of hydrated oxalate in atmosphere[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 524.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!