强激光与粒子束, 2013, 25 (7): 1690, 网络出版: 2013-05-31   

1064 nm Nd: YAG激光诱导铁等离子体特征参数的研究

Measurements of iron plasma parameters produced by a 1064 nm pulsed Nd: YAG laser
作者单位
1 西安邮电大学 电子工程学院, 西安 710121
2 西安文理学院 物理与机械电子工程学院, 西安 710065
摘要
利用1064 nm Nd: YAG激光器研究了激光诱导铁条等离子体的特征参数。为了减小测量误差和谱线自发辐射跃迁几率不确定性带来的计算误差,采用改进的迭代Boltzmann方法精确求解铁等离子体的电子温度为8058 K。Lorentz函数拟合Fe I 376.553 nm得到等离子体的电子数密度为8.7×1017 cm-3。分析表明等离子体的加热机制主要是逆轫致过程,其吸收系数是0.14 cm-1。实验数据证实激光诱导铁等离子体处于局部热力学平衡状态和光学薄状态。
Abstract
A 1064 nm pulsed Nd: YAG laser is used for the ablation of an iron bar sample in air at atmospheric pressure and the laser-induced plasma characteristics are examined. The electron number density of 8.7×1017 cm-3 in the iron plasma is inferred from the Stark broadened profile of Fe I 376.553 nm averaged with 10 single spectra. In order to minimize relative errors in calculation of the electron temperature, an improved iterative Boltzmann plot method is used. Experimental results show that the electron temperature is 8058 K with a regression coefficient of 0.981 38. Based on the experimental results, the plasma is verified to be in local thermodynamic equilibrium (LTE) and free from self-absorption. Considering the laser photon frequency (2.82×1014 Hz) is larger than the plasma frequency (8.3×1012 Hz), the loss of energy due to reflection of the laser beam from the plasma can be assumed to be insignificant. Experiments also demonstrate that the inverse Bremsstrahlung (IB) absorption is the dominant photon absorption process during the laser-plasma interaction, and the corresponding IB absorption coefficient is 0.14 cm-1.
参考文献

[1] Kearton B, Mattley Y. Laser-induced breakdown spectroscopy: Sparking new applications[J]. Nature Photonics, 2008, 2(9): 537-540.

[2] Singh J P,Thakur S N. Laser-induced breakdown spectroscopy[M]. Amsterdam: Elsevier Science BV, 2006.

[3] ZhaoXiaoxia. Spatial distribution of electron temperature of laser-induced aluminum alloy E414d plasma[J]. High Power Laser and Particle Beams, 2011, 23(9): 2519-2522.

[4] Cremers D A, Radziemski L J. Handbook of laser-induced breakdown spectroscopy[M]. Chichester: John Wiley and Sons, Ltd, 2006.

[5] Aragon C, Aguilera J A. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods[J]. Spectrochim Acta Part B, 2008, 63(9): 893-916.

[6] Michel A P M. Review: applications of single-shot laser-induced breakdown spectroscopy[J]. Spectrochim Acta Part B, 2010, 65(3): 185-191.

[7] Pasquini C, Cortez J, Silva L M C, et al. Laser induced breakdown spectroscopy[J]. J Braz Chem Soc, 2007, 18(3): 463-512.

[8] Castle B C, Knight A K,Visser K, et al. Battery powered laser-induced plasma spectrometer for elemental determinations[J]. J Anal Atom Spectrosc, 1998, 13(7): 589-596.

[9] Milaen M, Laserna J J. Diagnostics of silicon plasmas produced by visible nanosecond laser ablation[J]. Spectrochim Acta Part B, 2001, 56(3): 275-288.

[10] Miziolek A W, Palleschi V, Schechter I. Laser-induced breakdown spectroscopy (LIBS): Fundamentals and applications[M]. New York: Cambridge University Press, 2006.

[11] Amoruso S, Bruzzese R, Spinelli N, et al. Characterization of laser-ablation plasmas[J]. J Phys B: At Mol Opt Phys, 1999, 32(14): R131-R172.

[12] National Institute of Standards and Technology. Atomic spectra database[DB/OL]. http: //www.nist.gov./pml/data/asd.cfm.

[13] Sabsabi M, Cielo P. Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization[J]. Appl Spectrosc, 1995, 49(4): 499-507.

[14] Aydin U, Roth P, Gehlen C D, et al. Spectral line selection for time-resolved investigations of laser-induced plasmas by an iterative Boltzmann plot method[J]. Spectrochim Acta Part B, 2008, 63(10): 1060-1065.

[15] Narayanan V, Thareja R K. Emission spectroscopy of laser-ablated Si plasma related to nanoparticle formation[J]. Applied Surface Science, 2004, 222(1): 382-393.

[16] Abdellatif G, Iman H. A study of the laser plasma parameters at different laser wavelengths[J]. Spectrochim Acta Part B, 2002, 57(7): 1155-1165.

[17] AguileraJ A, Aragon C. Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: Temporal evolution of plasma parameters and self-absorption[J]. Spectrochim Acta Part B, 2008, 63(7): 784-792.

[18] Le Drogoff B, Margot J, Chaker M, et al. Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys[J]. Spectrochim Acta Part B, 2001, 56(6): 987-1002.

[19] Amoruso S, Armenante M, Berardi V, et al. Absorption and saturation mechanisms in aluminum laser ablated plasmas[J]. Appl Phys A, 1997, 65(3): 265-271.

[20] Harilal S S, Bindhu C V, Issac Riju C, et al. Electron density and temperature measurements in a laser produced carbon plasma[J]. Appl Phys, 1997, 82(5): 2140-2146.

[21] Shaikh N M, Hafeez S, Rashid B, et al. Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd: YAG laser[J]. Eur Phys J D, 2007, 44(2): 371-379.

罗文峰, 赵小侠, 朱海燕, 李冬冬, 李晓莉. 1064 nm Nd: YAG激光诱导铁等离子体特征参数的研究[J]. 强激光与粒子束, 2013, 25(7): 1690. Luo Wenfeng, Zhao Xiaoxia, Zhu Haiyan, Li Dongdong, Li Xiaoli. Measurements of iron plasma parameters produced by a 1064 nm pulsed Nd: YAG laser[J]. High Power Laser and Particle Beams, 2013, 25(7): 1690.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!