作者单位
摘要
1 长春光华学院工程技术研发中心, 吉林 长春 130033
2 吉林大学原子与分子物理研究所, 吉林 长春 130012
3 长春理工大学物理学院, 吉林 长春 130022
激光诱导击穿光谱(LIBS)已成为一种很好的材料含量鉴定技术, 当前LIBS研究的一个热点方向是提高其检测灵敏度。 在改善LIBS分析灵敏度时, 最主要的是增加激光烧蚀等离子体(LAP)的光辐射, 如火花放电辅助LIBS、 磁场增强LIBS、 空间约束LIBS、 火焰增强的LIBS、 共振增强LIBS和双脉冲LIBS。 此外, 升高烧蚀靶的温度也是提高LIBS光辐射和灵敏度的有效方法, 因为烧蚀靶温度升高, 其表面反射率降低, 这能增强激光与靶之间的耦合。 温度升高的靶将耦合更多的脉冲能量, 从而增强LAP光辐射。 另外, 在靶温度升高后, 靶也能加热其表面附近的气体, 导致气体密度降低, 气体密度的降低可以减少LAP与气体之间的碰撞, LAP膨胀过程中压力降低, 从而间接地增加了LAP的光谱强度。 加热的靶可以显著改善光谱发射强度, 但这些研究仅给出了空间积分的光谱, 没有进行空间分辨的光谱分析, 而LAP光谱的空间分布将会随靶材温度的变化而变化。 因此, 有必要研究升高靶温度对LAP空间分辨光发射的影响。 将铜靶加热到更高的温度, 用Nd∶YAG激光器激发铜产生激光烧蚀的LAP。 通过测量LAP发射, 发现预热铜产生的LAP发射强度高于室温下的发射强度。 对于空间分辨LAP光谱, 发射强度随着离铜靶距离的增加先升高而后降低; 靶温度也影响等离子体光谱的空间分布, 与未加热的铜相比, 预加热靶的空间分辨光谱发射区域移动到距离靶表面更远的位置。 另外, 根据空间分辨的光谱计算了电子温度和密度随距离铜靶的变化, 空间分辨电子温度和密度的分布与发射强度相似, 随着靶温度的升高高温高密度的等离子体进一步膨胀了。
激光诱导击穿光谱 预加热靶 光谱加强 电子温度 电子密度 Laser-induced breakdown spectroscopy Preheated target Plasma emission Electron temperature Electron density 
光谱学与光谱分析
2023, 43(7): 2032
作者单位
摘要
1 重庆大学 光电工程学院,重庆 400044
2 电子科技大学 微波电真空器件国家级重点实验室,成都 611731
基于电子动能与温度的关系以及费米黄金定律,对速率方程进行了优化,使其能够计算电子温度,进而实现了更为精准的速率方程求解。与已有的动能平衡法比较,该方法对能带电子温度变化过程进行了详细的描述,故无需采用优化算法求解,所以可以避免因陷入局部最优解而带来的多次计算的收敛值一致性较差的问题。计算结果表明,该方法在选取不同的初始温度时,通过自洽求解,即可解出各能级电子温度,且均可获得一致性较好的收敛值。
量子级联激光器 速率方程 能带电子温度 数值仿真 散射率 quantum cascade lasers rate equation electron temperature of energy bands numerical study scattering rate 
强激光与粒子束
2023, 35(12): 121003
作者单位
摘要
西安工程大学环境与化学工程学院, 陕西 西安 710048
远程等离子体可以有效避免电子与离子碰撞产生的刻蚀作用, 加强自由基反应, 取得更好的改性效果, 在膜材料领域具有重要的应用价值。 为了更加深入研究远程等离子体中电子状态及其变化规律, 采用发射光谱法对远程Ar等离子体进行了诊断, 研究了射频功率、 反应腔室内压强、 距放电中心距离对远程Ar等离子体发射光谱强度、 电子密度和电子温度的影响。 结果表明, 在690~890 nm区域中特征峰较为集中, 由ArⅠ原子谱线占主导, 且谱线强度的变化规律和电子密度的变化规律相同。 通过玻尔兹曼斜率法选取3条ArⅠ谱线计算了不同放电参数下的电子温度。 电子温度随射频功率、 反应腔室内压强、 距放电中心距离的改变而改变。 射频功率从30 W增加到150 W时, 电子温度从3 105.39 K降低至2 552.91 K。 压强从15 Pa增加到25 Pa时, 电子温度从3 066.53 K降低到2 593.32 K, 当压强继续增加到35 Pa时, 电子温度则增加至2 661.71 K。 在距放电中心0~10 cm处由于等离子体电位增大, 电子温度上升, 而10 cm后电子温度不断下降在距放电中心80 cm处趋于0 K。 通过分析ArⅠ696.894谱线的斯塔克展宽计算了远程Ar等离子体的电子密度, 发现电子密度的数量级可达1016 cm-3。 射频功率从30 W增加到150 W时, 电子密度从2.15×1016 cm-3增加到2.88×1016 cm-3, 压强从15 Pa增加到25 Pa时, 电子密度从2.36×1016 cm-3增加到2.90×1016 cm-3, 当压强继续增加到35 Pa时, 电子密度则降低至1.89×1016 cm-3。 增加轴向距离电子密度快速下降并在距放电中心80cm处趋于0cm-3。 可以通过控制放电参数及轴向距离来获得低浓度电子、 离子氛围, 有效避免电子与离子碰撞造成的刻蚀作用, 获得更好的改性效果。
远程等离子体 发射光谱 电子温度 电子密度 Remote plasma Emission spectrum Electronic temperature Electron density 
光谱学与光谱分析
2023, 43(2): 394
熊明 *
作者单位
摘要
核工业理化工程研究院,天津 300180
针对采用氩气放电方式产生等离子体的离子引出模拟研究需求,提出一种等离子体密度及电子温度等关键特征参数的光谱测量方法。根据氩等离子体状态建立反映其粒子间动力学反应过程的粒子布居平衡模型,并通过对比分析实验测得的发射光谱获取等离子体相关特征参数信息。实验结果表明,该光谱测量方法可获取典型工况下射流区内氩等离子体的密度及电子温度等关键参数信息,为离子引出过程的模拟研究提供一种可靠和实用的等离子体参数测量手段。
光谱学 等离子体密度 电子温度 氩气放电 发射光谱 粒子布居平衡模型 
激光与光电子学进展
2022, 59(17): 1730002
作者单位
摘要
1 长春工业大学电气与电子工程学院, 吉林 长春 130012
2 长春工业大学机电工程学院, 吉林 长春 130012
3 吉林建筑科技学院, 吉林 长春 130114
为了解决LIBS技术应用于冶金过程成分分析时, 温度变化导致测量精度低, 重复性差的问题, 就温度变化对等离子体的影响进行研究。 以Al元素为研究对象, 对比分析不同温度下的光谱强度、 等离子体电子温度和电子密度, 总结了温度上升和下降时光谱强度和等离子体特征参数的变化规律。 结果表明, Al元素特征谱线强度随温度上升呈增大趋势, 在700 ℃时达到饱和, 等离子体特征参数变化趋势与谱线强度基本一致, 当样品温度加热至700 ℃时, 等离子体电子温度上升至13 122 K, 电子密度增大至4.65×1016 cm-3; 与温度上升相比, 温度下降过程中, 等离子体光谱强度, 电子温度和电子密度的变化总体分为三个阶段。 第一阶段, 样品停止加热自然冷却, 光谱强度、 电子温度和电子密度随样品温度迅速下降; 第二阶段, 当样品温度下降至660 ℃左右时, 光谱强度下降速度变缓, 并趋于平稳, 此时等离子体电子温度稳定在16 000 K左右, 电子密度为7.6×1016 cm-3; 第三阶段, 光谱强度及等离子体特征参数持续下降, 直至样品温度下降至室温。 由此可见, 将LIBS技术应用于熔融金属成分检测时, 可以通过控制样品温度, 获取最佳的测量点, 进而提高LIBS技术的检测准确性。
激光诱导击穿光谱 样品温度 电子温度 电子密度 Laser induced breakdown spectroscopy Sample temperature Electron temperature Electron density 
光谱学与光谱分析
2022, 42(2): 598
作者单位
摘要
1 吉林大学白求恩第一医院核医学科,吉林 长春 130021
2 空军航空大学航空基础学院,吉林 长春 130022
3 吉林大学原子与分子物理研究所,吉林 长春 130012
提高激光诱导击穿光谱(LIBS)的信号强度是提高LIBS探测灵敏度的重要途径。本文以铜靶为烧蚀样品,研究了大气环境中不同空间约束壁数(0、2、3、4)和圆柱形约束壁对激光诱导Cu等离子体光谱的影响,并通过Boltzmann图方法测量了等离子体的电子温度。实验结果表明:当使用约束壁约束Cu等离子体时,Cu原子谱线强度、信背比和电子温度均比不存在约束时明显提高;随着腔体约束壁数增加,Cu原子谱线强度、信背比和电子温度逐渐提高;当腔体约束壁为圆柱形时,Cu原子谱线强度、信背比和电子温度最高。空间约束壁为圆柱形壁时空间约束对等离子体的约束效果最好,光谱信号最优。
光谱学 激光诱导击穿光谱 空间约束壁数 光谱增强 电子温度 
中国激光
2022, 49(6): 0611001
作者单位
摘要
1 兰州城市学院 培黎石油工程学院,甘肃兰州,730070
2 兰州城市学院 电子与信息工程学院,甘肃兰州,730070
利用光谱范围为400~1000 nm的无狭缝光栅光谱仪记录了云对地闪电放电光谱,在可见光谱的低频段观测到丰富的一价氮离子谱线,没有明显观测到其他重要的离子谱线。闪电通道内大量电子在电场作用下向地面倾泻使通道快速加热,沿通道径向温度降低,通道表面附近氮离子与电子的相互作用增强从而产生连续辐射。闪电的连续辐射机制主要包括轫致辐射和复合辐射,对应于氮离子与自由电子的库仑碰撞和对自由电子的捕获。当等离子体温度低于10000 K时,轫致连续辐射谱为平坦谱,其对连续谱在可见光范围内的轮廓特征没有明显影响。复合辐射方面,以类氢离子经典辐射理论为基础,引入非类氢的复杂离子近似计算方法,用Gaunt因子进行量子力学修正,分析氮离子的复合辐射过程。据此导出连续光谱复合辐射系数与波长的函数关系,由关系式绘制氮等离子体连续辐射光谱的特征曲线,与闪电连续光谱观测结果进行比较,发现等离子体表面电子温度与连续辐射光谱谱峰的位置密切相关;引入氮离子的有效核电荷数Z*对连续谱的阶跃特征和谱翼展宽特性有显著影响。对比发现,当Z*为3时,理论曲线与连续光谱的轮廓特征高度一致。Z*的取值范围由离子种类决定,有效荷电荷数Z*能很好地解释闪电等离子体在给定波长下连续光谱的阶跃特征。
闪电光谱 连续辐射 谱轮廓特征 电子温度 lightning spectra continuous radiation spectral profile feature electron temperature 
中国光学
2021, 14(5): 1243
作者单位
摘要
电子科技大学 电子科学与工程学院,成都610054
在气压40~80 Pa和微波功率400~800 W条件下,使用光学发射光谱法(OES)对Ar、CH4等气体产生的等离子体进行电子温度诊断。实验结果表明,OES法测试得到的电子温度介于0.75 eV到4 eV之间。在含碳气体的微波同轴线型等离子体中使用OES方法进行诊断是可行的,这些研究结果可以进一步拓展OES方法在等离子体增强化学气相沉积领域中的应用。
电子温度诊断 微波等离子体 朗缪尔探针 发射光谱 Electron temperature diagnostics Microwave plasma Langmuir probe Optical emission spectrometry 
光子学报
2021, 50(9): 0930001
作者单位
摘要
华南师范大学 物理与电信工程学院, 广州 510006
在玻璃基底上镀35nm厚的ITO薄膜, 通过椭偏仪测量ITO薄膜的线性介电常数。由于ITO具有高掺杂浓度, 因此其介电常数可以用Drude模型来进行量化计算, 得到其介电常数近零(ENZ)波长约为λ=1100nm。借助双温模型计算电子温度和晶格温度随时间的变化, 根据电子温度的升高计算等离子体频率的变化, 将其带入Drude模型中, 可以得到一个新的介电常数, 最后可以通过计算折射率的变化, 从而求出非线性折射率n2。计算结果表明, 在ENZ波长入射时, 可以得到最大非线性折射率n2=4.66×10-15m2/W。因此, 实验中选取的材料可在低功率光照下得到显著的折射率变化, 可望应用于全光存储、全光开关等纳米光子器件的设计。
介电常数近零材料 非线性光学 双温模型 电子温度 等离子体频率 epsilon-near-zero material nonlinear optics two temperature model electronic temperature plasma frequency 
半导体光电
2021, 42(4): 499
作者单位
摘要
1 盐城工学院信息工程学院, 江苏 盐城 224051
3 盐城工学院汽车工程学院, 江苏 盐城 224051
采用了一种针对针的放电结构, 将其放置在一个高纯氩气的密闭腔室中, 通过施加正极性的过电压产生可重复的大气压纳秒脉冲放电, 并提出建立大气压放电的连续辐射模型来诊断氩气纳秒脉冲放电中的电子温度。 实验利用电压和电流探头分别获取放电过程中的电压和电流波形图, 其放电脉宽约为20 ns。 通过消色差透镜、 单色仪和ICCD等光学系统的组合来测量放电正柱区在不同时刻(0<t<20 ns)的时间分辨发射光谱。 结果表明, 放电中连续谱的强度随时间先增加(0<t<10 ns)后减小(10 ns<t<20 ns), 但是氩原子的谱线强度则随时间的增加而一直增大。 研究表明连续谱强度与电子密度成正相关, 因而电子密度随着时间也是先增加而后减小, 这与放电电流的变化规律是完全一致的。 根据连续谱模型拟合得到放电过程中(0<t<10 ns)的电子温度为(1.4±0.2) eV。 随着驱动电压的下降(10 ns<t<20 ns), 电子温度逐步减小至0.9 eV。 在0<t<10 ns中, 激发态氩原子主要是由电子碰撞激发产生的, 因而谱线强度随着电子密度的增加而增大。 然后, 随着电子温度的减小, ${Ar_{2}}^{+}$复合反应速率激增, 导致电子与离子的复合过程主导产生激发态氩原子, 即谱线强度继续增大。 通过加入0.5%的水蒸气以获取OH的振转光谱。 实验发现, OH(A)的产生机制使其偏离玻尔兹曼平衡分布, 本文采用了双温的OH(A-X)光谱模型来考察气体温度。 在放电过程中, 气体温度保持不变, 大约为400 K。 此外, 水蒸气的加入使得短波长的连续谱发生显著增强。 光谱分析认为H2O在放电中能够解离产生H2, 继而与氩原子的亚稳态发生能量转移生成激发态H2($a^{3} \sum^{+}_{g}$)。 H2($a^{3} \sum^{+}_{g}$)将会自发辐射跃迁到排除态H2($b^{3} \sum^{+}_{u}$), 同时发射短波长的连续谱。 由于短波长的连续谱对电子温度(Te>1 eV)的响应较为灵敏, 所以载气中少量的水蒸气将会对连续谱诊断电子温度带来较大的影响。
大气压放电 发射光谱 纳秒脉冲放电 电子温度 连续谱 Atmospheric pressure discharges Optical emission spectroscopy Nanosecond pulsed discharges Electron temperature Continuum radiation 
光谱学与光谱分析
2021, 41(8): 2337

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!