激光与光电子学进展, 2017, 54 (11): 110601, 网络出版: 2017-11-17   

非本征光纤法布里-珀罗干涉传感器的温度特性 下载: 568次

Temperature Characterization of Extrinsic Fiber Fabry-Perot Interferometric Sensor
作者单位
安徽工业大学电气与信息工程学院, 安徽 马鞍山 243000
摘要
介绍了非本征光纤法布里-珀罗干涉传感器的结构及制作方法。通过Matlab仿真研究不同腔长及反射率对非本征光纤法布里-珀罗干涉传感器干涉谱的影响,建立了非本征光纤法布里-珀罗干涉传感器的温度传感模型。对不同腔长及不同反射率的非本征光纤法布里-珀罗干涉传感器进行温度对比实验。结果表明,短腔的非本征光纤法布里-珀罗干涉传感器的温度灵敏度高;镀钯金膜的非本征光纤法布里-珀罗干涉传感器可较好地避免温度对其干涉谱的影响,具有温度补偿的作用。
Abstract
The structure and fabrication method of the extrinsic fiber Fabry-Perot interference (EFPI) sensors are introduced. The influence of different cavity lengths and reflectivities on interference spectrum of the EFPI is analyzed through Matlab simulation, and a temperature sensing model of the EFPI sensor is established. Finally, temperature characteristics of the EFPI sensors with different cavity lengths and reflectivities are researched through a comparison experiment. The results indicate that the EFPI sensor with a short cavity fiber has a higher temperature sensitivity. In addition, the EFPI sensor coated with palladium-gold film can effectively avoid the influence of temperature on interference spectrum and compensate temperature fluctuation.
参考文献

[1] Zhang G L, Yang M H, Wang M. Large temperature sensitivity of fiber-optic extrinsic Fabry-Perot interferometer based on polymer-filled glass capillary[J]. Optical Fiber Technology, 2013, 19(6): 618-622.

[2] 张杰, 荆振国, 李昂, 等. 结构简单的熔接式全石英光纤EFPI高静压传感器[J]. 中国激光, 2016, 43(10): 1010004.

    Zhang Jie, Jing Zhenguo, Li Ang, et al. All-sillica fiber EFPI high static pressure sensor in fusion with simple structure[J]. Chinese J Lasers, 2016, 43(10): 1010004.

[3] 段丹阳, 程进, 高然, 等. 基于光纤法布里-珀罗干涉仪的温度传感器[J]. 传感器与微系统, 2017, 36(4): 124-127.

    Duan Danyang, Cheng Jin, Gao Ran, et al. Temperature sensor based on optical fiber Fabry-Perot interferometer[J]. Transducer and Microsystem Technologies, 2017, 36(4): 124-127.

[4] Wang J, Dong B, Lally E, et al. Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers[J]. Optics Letters, 2010, 35(5): 619-621.

[5] Wu Y, Zhang Y, Wu J, et al. Temperature-insensitive fiber optic Fabry-Perot interferometer based on special air cavity for transverse load and strain measurements[J]. Optics Express, 2017, 25(8): 9443-9448.

[6] Wang Z, Jiang Y, Peng H, et al. A temperature-compensated fibre optic extrinsic Fabry-Perot interferometric displacement sensor for fault measurement in geomechanics[J]. Measurement Scienceand Technology, 2012, 24(2): 025104.

[7] 彭华, 马秀敏, 王震, 等. 用于断层测量的温度补偿光纤外腔型法布里-珀罗位移传感器[J]. 地质力学学报, 2013, 19(3): 315-324.

    Peng Hua, Ma Xiumin, Wang Zhen, et al. A fibre optic extrinsic Fabry-Perot interferometer with temperature compensation for fault measurement[J]. Journal of Geomechanics, 2013, 19(3): 315-324.

[8] 江毅, 唐才杰. 光纤Fabry-Perot干涉仪原理及应用[M]. 北京: 国防工业出版社, 2009.

    Jiang Yi, Tang Caijie. Optical fiber Fabry-Perot interferometer principle and applications[M]. Beijing: National Defense Industry Press, 2009.

[9] 王党树, 王新霞. 法布里-珀罗光纤温度传感器的理论模型与仿真[J]. 仪表技术, 2014, 21(4): 50-52.

    Wang Dangshu, Wang Xinxia. Theoretical model and simulation of Fabry-Perot fiber temperature sensor[J]. Instrumentation Technology, 2014, 21(4): 50-52.

[10] 王彦, 赵凯, 刘加萍. 基于体相位光栅色散解调的布拉格光纤光栅温度监测[J]. 激光与光电子学进展, 2016, 53(10): 101202.

    Wang Yan, Zhao Kai, Liu Jiaping. Optical fiber Bragg grating temperature monitoring based on volume phase grating dispersion demodulation[J]. Laser & Optoelectronics Progress, 2016, 53(10): 101202.

刘加萍, 王彦, 刘吉虹. 非本征光纤法布里-珀罗干涉传感器的温度特性[J]. 激光与光电子学进展, 2017, 54(11): 110601. Liu Jiaping, Wang Yan, Liu Jihong. Temperature Characterization of Extrinsic Fiber Fabry-Perot Interferometric Sensor[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110601.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!