光学学报, 2011, 31 (6): 0606001, 网络出版: 2011-05-16   

光子晶体光纤中的参变放大与拉曼散射

Parametric Amplification and Raman Scattering in Photonic Crystal Fiber
作者单位
内蒙古大学物理科学与技术学院, 内蒙古 呼和浩特 010021
摘要
光子晶体光纤(PFC)有着传统光纤无法比拟的优良特性,特别是具有极好的非线性效应和双折射效应;当输入抽运波偏振方向同双折射轴成45°时,通过引入拉曼增益的洛伦兹模型,研究了光子晶体光纤中在参变放大和拉曼散射共同作用下的增益谱特性。结果表明,由于参变放大和拉曼散射的相互作用,输入功率和群速度失配对光子晶体光纤的增益有重要影响。随着输入功率和群速度失配的增大,增益谱强度增强,宽度加宽。在反常色散区,输入功率较大并达到稳定时,斯托克斯波增益谱呈现多峰结构;在正常色散区,斯托克斯波增益大于反斯托克斯增益。当满足一定关系时,在光子晶体光纤中传播的抽运波可以分解为脉冲序列,由此分离和提取T频脉冲。
Abstract
Photonic crystal fiber (PCF) has excellent features compared with the traditional optical fiber, especially nonlinear effect and birefringence effect. By quoting Lorentzian model of Raman gain spectra in PCF, the gain spectra are studied under the action of Raman scattering together with parametric amplification, when the pump wave polarization is oriented at 45° between the axes. The result shows that the input power and the group velocity mismatching have a great influence on the gain spectra because of the interaction between parametric amplification and Raman scattering. The gain spectrum bandwidth widened and the intensity enhanced as the input power and the group-velocity mismatching enlarged. Stokes-wave is multiple-peaked structure when input power is greater and stable in anomalous dispersion regime .The Stokes-waves gain are greater than anti-Stokes waves gain in normal dispersion regime. The pump wave can be changed into pulse array under certain conditions so that the T-frequency pluses can be extracted from it.
参考文献

[1] J. C. Knight, T. A. Birks, P. St. J. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547~1549

[2] J. C. Knight. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847~851

[3] 李宏雷, 娄淑琴, 郭铁英 等. 实用化色散补偿光子晶体光纤设计[J]. 光学学报, 2009, 29(12): 125~128

    Li Honglei, Lou Shuqin, Guo Tieying et al.. Design of practical dispersion compensation photonic crystal fiber[J]. Acta Optica Sinica, 2009, 29(s2): 125~128

[4] 齐跃峰, 毕卫红, 刘燕燕 等. 光子晶体光纤布拉格光栅传输谱特性研究[J]. 光学学报, 2010, 30(4): 1178~1183

    Qi Yuefeng, Bi Weihong, Liu Yanyan et al.. Research on transmission spectrum characteristics of the photonic crystal Bragg fiber grating[J]. Acta Optica Sinica, 2010, 30(4): 1178~1183

[5] 王清月, 胡明列, 柴路. 光子晶体光纤非线性光学研究新进展[J]. 中国激光, 2006, 33(1): 57~66

    Wang Qinyue, Hu Minglie, Chai Lu. Progress in nonlinear optics with photonic crystal fibers[J]. Chinese J. Lasers, 2006, 33(1): 57~66

[6] S. Leon-Saval, T. Birks, W. Wadsworth et al.. Supercontinuum generation in submicron fibre waveguides[J]. Opt. Express, 2004, 12(13): 2864~2869

[7] G. P. Agrawal. 非线性光纤光学原理及应用[M]. 贾东方 等 译. 北京: 电子工业出版社, 2002

    G. P. Agrawal. Applications of Nonlinear Fiber Optics[M].Jia Dongfang et al.. Transl. Beijing: Publishing House of Electronics Industry. 2002

[8] 王秋国, 张虎, 张霞 等.飞秒脉冲在光子晶体光纤中的超连续谱产生[J]. 中国激光, 2009, 36(s1): 353~355

    Wang Qiuguo, Zhang Hu, Zhang Xia et al.. Supercontinuum generation using 120 fs femtosecond pulse laser in a dispersion flattened photonic crystal fiber[J]. Chinese J. Lasers, 2009, 36(s1): 353~355

[9] C. Canat, R. Spittel, S. Jetschke et al.. Analysis of the multifilament core fiber using the effective index theory[J]. Opt. Express, 2010, 18(5): 4644~4654

[10] 王彦斌, 侯静, 梁冬明 等. 光子晶体光纤正常色散区超连续谱产生的研究[J]. 中国激光, 2010, 37(4): 1073~1077

    Wang Yanbin, Hou Jing, Liang Dongming et al.. Study of supercontinuum generation in the normal-dispersion regime of photonic crystal fiber[J]. Chinese J. Lasers, 2010, 37(4): 1073~1077

[11] Lin Q., G. P. Agrawal. Raman response function for silica fibers[J]. Opt. Lett., 2006, 31(21): 3086~3088

[12] Trillo S., Wabnitz S.. Parametric and Raman amplification in birefringent fibers[J]. J. Opt. Soc. Am. B, 1992, 9(7): 1061~1082

[13] J. D. Harvey, R. Leonhardt, Stephane Coen et al.. Scalar modulation instability in normal dispersion regime by use of a photonic crystal fiber[J]. J. Opt. Lett., 2003, 28(15): 2225~2227

[14] E. Seve, P. Tchofo Dinda, G. Millot et al.. Modulational instability and critical regime in a highly birefringent fiber[J]. Phy. Rev. A, 1996, 54(4): 3519~3524

[15] 贾维国, 杨性愉. 强双折射光纤中任意偏振方向矢量调制不稳定性[J]. 物理学报, 2005, 54(3): 1053~1058

    Jia Weiguo, Yang Xingyu. Vector modulation instability in an arbitrary polarized direction in strong birefringence fibers[J]. Acta Physica Sinica, 2005, 54(3): 1053~1058

[16] Rothenberg J. E.. Modulational instability for normal dispersion[J]. Phys. Rev. A., 1990, 42(1): 682~685

[17] 贾维国, 周彦勇, 韩永明 等. 光子晶体光纤耦合器中的标量调制不稳定性[J]. 物理学报, 2009, 58(9): 6323~6329

    Jia Weiguo, Zhou Yanyong, Han Yongming et al.. Scalar modulation instability in photonic crystal fiber couplers[J]. Acta Physica Sinica, 2009, 58(9): 6323~6329

王旭颖, 贾维国, 尹建全, 通拉嘎, 门克内木乐, 杨军, 张俊萍. 光子晶体光纤中的参变放大与拉曼散射[J]. 光学学报, 2011, 31(6): 0606001. Wang Xuying, Jia Weiguo, Yin Jianquan, Tong Laga, Menke Neimule, Yang Jun, Zhang Junping. Parametric Amplification and Raman Scattering in Photonic Crystal Fiber[J]. Acta Optica Sinica, 2011, 31(6): 0606001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!