光学学报, 2019, 39 (3): 0316001, 网络出版: 2019-05-10   

W/VO2方形纳米柱阵列可调中红外宽频吸收器 下载: 1251次

Tunable Mid-Infrared Broadband Absorber Based on W/VO2 Square Nano-Pillar Array
作者单位
1 上海理工大学光电信息与计算机工程学院, 上海 200093
2 上海市现代光学系统重点实验室, 上海 200093
3 上海电力大学电子与信息工程学院, 上海 200090
4 上海健康医学院医学影像学院, 上海 201318
引用该论文

黄雅琴, 李毅, 李政鹏, 裴江恒, 田蓉, 刘进, 周建忠, 方宝英, 王晓华, 肖寒. W/VO2方形纳米柱阵列可调中红外宽频吸收器[J]. 光学学报, 2019, 39(3): 0316001.

Yaqin Huang, Yi Li, Zhengpeng Li, Jiangheng Pei, Rong Tian, Jin Liu, Jianzhong Zhou, Baoying Fang, Xiaohua Wang, Han Xiao. Tunable Mid-Infrared Broadband Absorber Based on W/VO2 Square Nano-Pillar Array[J]. Acta Optica Sinica, 2019, 39(3): 0316001.

参考文献

[1] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

    Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

[2] 孙慧慧, 延凤平, 谭思宇, 等. 磁导率近零太赫兹超材料设计的仿真分析[J]. 中国激光, 2018, 45(6): 0614001.

    孙慧慧, 延凤平, 谭思宇, 等. 磁导率近零太赫兹超材料设计的仿真分析[J]. 中国激光, 2018, 45(6): 0614001.

    Sun H H, Yan F P, Tan S Y, et al. Simulation analysis on design of permeability-near-zero terahertz metamaterials[J]. Chinese Journal of Lasers, 2018, 45(6): 0614001.

    Sun H H, Yan F P, Tan S Y, et al. Simulation analysis on design of permeability-near-zero terahertz metamaterials[J]. Chinese Journal of Lasers, 2018, 45(6): 0614001.

[3] 郝宏刚, 丁天玉, 罗伟, 等. 基于超材料的新型宽带微波吸波器设计[J]. 激光与光电子学进展, 2018, 55(6): 061604.

    郝宏刚, 丁天玉, 罗伟, 等. 基于超材料的新型宽带微波吸波器设计[J]. 激光与光电子学进展, 2018, 55(6): 061604.

    Hao H G, Ding T Y, Luo W, et al. Design of novel broadband microwave absorber based on metamaterials[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061604.

    Hao H G, Ding T Y, Luo W, et al. Design of novel broadband microwave absorber based on metamaterials[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061604.

[4] 韩昊, 武东伟, 刘建军, 等. 一种太赫兹类电磁诱导透明超材料谐振器[J]. 光学学报, 2014, 34(4): 0423003.

    韩昊, 武东伟, 刘建军, 等. 一种太赫兹类电磁诱导透明超材料谐振器[J]. 光学学报, 2014, 34(4): 0423003.

    Han H, Wu D W, Liu J J, et al. A terahertz metamaterial analog of electromagnetically induced transparency[J]. Acta Optica Sinica, 2014, 34(4): 0423003.

    Han H, Wu D W, Liu J J, et al. A terahertz metamaterial analog of electromagnetically induced transparency[J]. Acta Optica Sinica, 2014, 34(4): 0423003.

[5] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

    Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

[6] Kuznetsov S A, Paulish A G, Gelfand A V, et al. Matrix structure of metamaterial absorbers for multispectral terahertz imaging[J]. Progress in Electromagnetics Research, 2012, 122: 93-103.

    Kuznetsov S A, Paulish A G, Gelfand A V, et al. Matrix structure of metamaterial absorbers for multispectral terahertz imaging[J]. Progress in Electromagnetics Research, 2012, 122: 93-103.

[7] Liu X L, Starr T, Starr A F, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Physical Review Letters, 2010, 104(20): 207403.

    Liu X L, Starr T, Starr A F, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Physical Review Letters, 2010, 104(20): 207403.

[8] Kuznetsov S A, Paulish A G, Gelfand A V, et al. Bolometric THz-to-IR converter for terahertz imaging[J]. Applied Physics Letters, 2011, 99(2): 023501.

    Kuznetsov S A, Paulish A G, Gelfand A V, et al. Bolometric THz-to-IR converter for terahertz imaging[J]. Applied Physics Letters, 2011, 99(2): 023501.

[9] 朱路, 王杨, 熊广, 等. 宽波段纳米超材料太阳能吸收器的设计及其吸收特性[J]. 光学学报, 2017, 37(9): 0923001.

    朱路, 王杨, 熊广, 等. 宽波段纳米超材料太阳能吸收器的设计及其吸收特性[J]. 光学学报, 2017, 37(9): 0923001.

    Zhu L, Wang Y, Xiong G, et al. Design and absorption characteristics of broadband nano-metamaterial solar absorber[J]. Acta Optica Sinica, 2017, 37(9): 0923001.

    Zhu L, Wang Y, Xiong G, et al. Design and absorption characteristics of broadband nano-metamaterial solar absorber[J]. Acta Optica Sinica, 2017, 37(9): 0923001.

[10] 陈曦, 薛文瑞, 赵晨, 等. 基于LiF和NaF的超宽带红外吸收器[J]. 光学学报, 2018, 38(1): 0123002.

    陈曦, 薛文瑞, 赵晨, 等. 基于LiF和NaF的超宽带红外吸收器[J]. 光学学报, 2018, 38(1): 0123002.

    Chen X, Xue W R, Zhao C, et al. Ultra-broadband infrared absorber based on LiF and NaF[J]. Acta Optica Sinica, 2018, 38(1): 0123002.

    Chen X, Xue W R, Zhao C, et al. Ultra-broadband infrared absorber based on LiF and NaF[J]. Acta Optica Sinica, 2018, 38(1): 0123002.

[11] Ullah H, Khan A D, Noman M, et al. Novel multi-broadband plasmonic absorber based on a metal-dielectric-metal square ring array[J]. Plasmonics, 2018, 13(2): 591-597.

    Ullah H, Khan A D, Noman M, et al. Novel multi-broadband plasmonic absorber based on a metal-dielectric-metal square ring array[J]. Plasmonics, 2018, 13(2): 591-597.

[12] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 2012, 6(9): 7998-8006.

    Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 2012, 6(9): 7998-8006.

[13] Xie T, Chen Z, Ma R Y, et al. A wide-angle and polarization insensitive infrared broadband metamaterial absorber[J]. Optics Communications, 2017, 383: 81-86.

    Xie T, Chen Z, Ma R Y, et al. A wide-angle and polarization insensitive infrared broadband metamaterial absorber[J]. Optics Communications, 2017, 383: 81-86.

[14] Bouchon P, Koechlin C, Pardo F, et al. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas[J]. Optics Letters, 2012, 37(6): 1038-1040.

    Bouchon P, Koechlin C, Pardo F, et al. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas[J]. Optics Letters, 2012, 37(6): 1038-1040.

[15] Yang J, Qu S, Ma H, et al. Broadband infrared metamaterial absorber based on anodic aluminum oxide template[J]. Optics Laser Technology, 2018, 101: 177-182.

    Yang J, Qu S, Ma H, et al. Broadband infrared metamaterial absorber based on anodic aluminum oxide template[J]. Optics Laser Technology, 2018, 101: 177-182.

[16] Popuri S R, Artemenko A, Decourt R, et al. Presence of Peierls pairing and absence of insulator-to-metal transition in VO2 (A): a structure-property relationship study[J]. Physical Chemistry Chemical Physics, 2017, 19(9): 6601-6609.

    Popuri S R, Artemenko A, Decourt R, et al. Presence of Peierls pairing and absence of insulator-to-metal transition in VO2 (A): a structure-property relationship study[J]. Physical Chemistry Chemical Physics, 2017, 19(9): 6601-6609.

[17] 伍征义, 李毅, 陈培祖, 等. 基于Au/VO2纳米结构的可调控红外吸收器设计[J]. 红外与毫米波学报, 2016, 35(6): 694-700.

    伍征义, 李毅, 陈培祖, 等. 基于Au/VO2纳米结构的可调控红外吸收器设计[J]. 红外与毫米波学报, 2016, 35(6): 694-700.

    Wu Z Y, Li Y, Chen P Z, et al. Design of tunable infrared absorber based on Au/VO2 nanostructures[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6): 694-700.

    Wu Z Y, Li Y, Chen P Z, et al. Design of tunable infrared absorber based on Au/VO2 nanostructures[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6): 694-700.

[18] Liang J R, Hou L H, Li J P. Frequency tunable perfect absorber in visible and near-infrared regimes based on VO2 phase transition using planar layered thin films[J]. Journal of the Optical Society of America B, 2016, 33(6): 1075-1080.

    Liang J R, Hou L H, Li J P. Frequency tunable perfect absorber in visible and near-infrared regimes based on VO2 phase transition using planar layered thin films[J]. Journal of the Optical Society of America B, 2016, 33(6): 1075-1080.

[19] Liu Z M, Li Y, Zhang J, et al. Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films[J]. Journal of Physics D: Applied Physics, 2017, 50(38): 385104.

    Liu Z M, Li Y, Zhang J, et al. Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films[J]. Journal of Physics D: Applied Physics, 2017, 50(38): 385104.

[20] Wang W, Qu Y R, Du K K, et al. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals[J]. Applied Physics Letters, 2017, 110(10): 101101.

    Wang W, Qu Y R, Du K K, et al. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals[J]. Applied Physics Letters, 2017, 110(10): 101101.

[21] 王海方, 李毅, 俞晓静, 等. 二氧化钒薄膜的变温红外光学特性研究[J]. 光学学报, 2010, 30(5): 1522-1526.

    王海方, 李毅, 俞晓静, 等. 二氧化钒薄膜的变温红外光学特性研究[J]. 光学学报, 2010, 30(5): 1522-1526.

    Wang H F, Li Y, Yu X J, et al. Study on temperature dependence of infrared optical properties of vanadium dioxide thin film[J]. Acta Optica Sinica, 2010, 30(5): 1522-1526.

    Wang H F, Li Y, Yu X J, et al. Study on temperature dependence of infrared optical properties of vanadium dioxide thin film[J]. Acta Optica Sinica, 2010, 30(5): 1522-1526.

[22] Henry C H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells[J]. Journal of Applied Physics, 1980, 51(8): 4494-4500.

    Henry C H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells[J]. Journal of Applied Physics, 1980, 51(8): 4494-4500.

[23] Chiu C W, Cheng C W, Lai K T, et al. Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays[J]. Optics Express, 2012, 20(9): 10376-10381.

    Chiu C W, Cheng C W, Lai K T, et al. Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays[J]. Optics Express, 2012, 20(9): 10376-10381.

黄雅琴, 李毅, 李政鹏, 裴江恒, 田蓉, 刘进, 周建忠, 方宝英, 王晓华, 肖寒. W/VO2方形纳米柱阵列可调中红外宽频吸收器[J]. 光学学报, 2019, 39(3): 0316001. Yaqin Huang, Yi Li, Zhengpeng Li, Jiangheng Pei, Rong Tian, Jin Liu, Jianzhong Zhou, Baoying Fang, Xiaohua Wang, Han Xiao. Tunable Mid-Infrared Broadband Absorber Based on W/VO2 Square Nano-Pillar Array[J]. Acta Optica Sinica, 2019, 39(3): 0316001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!