红外与激光工程, 2017, 46 (12): 1222003, 网络出版: 2018-01-19   

空间激光通信离轴两镜反射望远镜自由曲面光学天线设计

Optical antenna design of off-axis two-mirror reflective telescope with freeform surface for space laser communication
关姝 1,2王超 1,2佟首峰 1,2姜会林 1,2常帅 1,2范雪冰 1,2
作者单位
1 长春理工大学 光电工程学院, 吉林 长春 130022
2 长春理工大学 空间光电技术研究所, 吉林 长春 130022
摘要
同轴两反结构作为空间激光通信光学天线时常存在接收视场小、发射效率低等缺点。同时, 因中心遮拦造成的能量损失, 也会大大降低通信系统的瞄准和捕获概率。针对此缺陷, 提出采用离轴两反天线结构并引入自由曲面设计以提高通信系统的性能。由初级像差理论推导得出离轴两反系统的初始结构, 并采用Zernike多项式自由曲面面形, 增加系统设计自由度, 提高系统平衡像差的能力。给出入瞳口径与焦距相同的同轴两反和离轴两反系统的设计实例, 并比较二者的光学传递函数MTF、点列图、衍射包围圆能量、波前误差等。结果表明: 离轴两反自由曲面天线的像质明显优于同轴两反天线, 因而该种天线结构的使用可提升空间激光通信系统的整体性能。
Abstract
The coaxial two-mirror reflective structure has the disadvantage of small receiving field of view and low emission efficiency when being used as optical antenna in space laser communication. At the same time, the energy loss caused by central obscuration will greatly reduce the aiming and capturing probability of communication system. For this inherent defects, an off-axis two-mirror reflective structure with freeform surface was designed to improve the performance of space laser communication. The initial structure of the off-axis two-mirror reflective structure was deduced according to the basic aberration theory. Zernike polynomial freeform surface was introduced to improve the ability of designing freedom and balancing the freeform surfaces aberration. A design example was given whose coaxial and off-axis two-mirror reflective system had same pupil aperture and focal length, and the modulation transfer function, spot diagram, diffraction encircled energy and wavefront error were compared. The results show that the image quality of the off-axis two-mirror reflective antenna with freeform surface is better than that of the coaxial, thus, the structure of the off-axis two-mirror reflective antenna structure could improve entire performance of space laser communication system.
参考文献

[1] 姜会林, 佟首峰, 张立中, 等. 空间激光通信技术与系统[M]. 北京: 国防工业出版社, 2010: 1-2.

    Jiang Huilin, Tong Shoufeng, Zhang Lizhong, et al. The Technologies and Systems of Space Laser Communication [M]. Beijing: National Defense Industry Press, 2010: 1-2. (in Chinese)

[2] 李少辉, 陈小梅, 倪国强. 高精度卫星激光通信地面验证系统[J]. 光学 精密工程, 2017, 25(5): 1149-1158.

    Li Shaohui, Chen Xiaomei, Ni Guoqiang. Highly precise ground certification system of satellite laser communication [J]. Optics and Precision Engineering, 2017, 25(5): 1149-1158. (in Chinese)

[3] 程彦彦. 星载激光通信终端光学系统研究[D]. 西安: 中国科学院西安光学精密机械研究所, 2012: 16-19.

    Cheng Yanyan. Research of space laser communication optical system[D]. Xi′an: Xi′an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2012: 16-19. (in Chinese)

[4] 赵意意. 空间相干光通信终端光学系统研究[D]. 西安: 中国科学院西安光学精密机械研究所, 2015: 60-63.

    Zhao Yiyi. Study on the optical system of space coherent optical communication terminal[D]. Xi′an: Xi′an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2015: 60-63. (in Chinese)

[5] 郭丽红, 张靓, 杜中伟,等. NASA月球激光通信演示验证试验[J]. 飞行器测控学报, 2015, 34(1): 87-94.

    Guo Lihong, Zhang Liang, Du Zhongwei, et al. A survey of lunar laser communication demonstration of NASA[J]. Journal of Spacecraft TT&C Technology, 2015, 34(1): 87-94. (in Chinese)

[6] 冉英华. 空间光通信中光学天线系统的设计及性能分析[D]. 成都: 电子科技大学, 2009: 15-17.

    Ran Yinghua. Research on optical system of space borne laser communication terminal[D]. Chengdu: University of Electronic Technology of China, 2009: 15-17. (in Chinese)

[7] 巩盾. 空间遥感测绘光学系统研究综述[J]. 中国光学, 2015, 8(5): 714-724.

    Gong Dun. Review on mapping space remote sensor optical system[J]. Chinese Optics, 2015, 8(5): 714-724. (in Chinese)

[8] 王鑫磊. 卫星光通信系统中反射式光学天线优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2014: 27-28.

    Wang Xinlei. Optimized design of reflective optical antenna used in satellite laser[D]. Harbin: Harbin Institute of Technology, 2014: 27-28. (in Chinese)

[9] 俞建杰, 李宣娇, 谭立英, 等. 离轴天线在卫星激光通信系统中的应用[J]. 红外与激光工程, 2013, 42(7): 1890-1895.

    Yu Jianjie, Li Xuanjiao, Tan Liying, et al. Off-axis optical telescope for satellite laser communicate on terminal[J]. Infrared and Laser Engineering, 2013, 42(7): 1890-1895. (in Chinese)

[10] Suryakant Gautam, Amit Gupta, Ganga Sharan Singh. Optical design of off-axis Cassegrain telescope using freeform surface at the secondary mirror[J]. Optical Engineering, 2015, 54(2): 1-2.

[11] 孟庆宇, 汪洪源, 王严,等. 大线视场自由曲面离轴三反光学系统设计[J]. 红外与激光工程, 2016, 45(10): 1018002.

    Meng Qingyu. Wang Hongyuan. Wang Yan, et al. Off-axis three-mirror freeform optical system with large linear field of view [J]. Infrared and Laser Engineering, 2016, 45(10):1018002. (in Chinese)

[12] 孟祥翔, 刘伟奇, 张大亮,等.双自由曲面大视场头盔显示光学系统设计[J]. 红外与激光工程, 2016, 45(4): 0418004.

    Meng Xiangxiang, Liu Weiqi, Zhang Daliang, et al. Design of wide field-of-view head-mounted display optical system with double freeform surfaces[J]. Infrared and Laser Engineering, 2016, 45(4): 0418004. (in Chinese)

[13] 张磊, 刘东, 师途, 等. 光学自由曲面面形检测技术[J]. 中国光学, 2017, 10(3): 283-299.

    Zhang Lei, Liu Dong, Shi Tu, et al. Optical freeform surfaces testing technologies[J]. Chinese Optics, 2017, 10(3): 283-299. (in Chinese)

[14] 李明, 罗霄, 薛栋林,等. 考虑投影畸变设计大口径离轴非球面检测用计算全息图[J]. 光学 精密工程, 2015, 23(5): 1246-1253.

    Li Ming, Luo Xiao, Xue Donglin, et al. Design of CG fortesting large off-axis asphere by considering mapping distortion[J]. Optics and Precision Engineering, 2015, 23(5): 1246-1253. (in Chinese)

关姝, 王超, 佟首峰, 姜会林, 常帅, 范雪冰. 空间激光通信离轴两镜反射望远镜自由曲面光学天线设计[J]. 红外与激光工程, 2017, 46(12): 1222003. Guan Shu, Wang Chao, Tong Shoufeng, Jiang Huilin, Chang Shuai, Fan Xuebing. Optical antenna design of off-axis two-mirror reflective telescope with freeform surface for space laser communication[J]. Infrared and Laser Engineering, 2017, 46(12): 1222003.

本文已被 11 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!