中国激光, 2017, 44 (7): 0703013, 网络出版: 2017-07-05   

基于黑磷量子点可饱和吸收体的多波长脉冲簇光纤激光器

Black Phosphorus Quantum Dots Saturable Absorber for Dual-Wavelength Pulse Cluster Fiber Laser
作者单位
1 华南师范大学广州市特种光纤光子器件重点实验室, 广东 广州 510006
2 华南师范大学广东省微结构功能光纤与器件工程技术研究中心, 广东 广州 510006
3 淮北师范大学物理与电子信息学院, 安徽 淮北 235000
4 深圳大学光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
引用该论文

刘萌, 闫玉蓉, 汪徐德, 罗爱平, 徐文成, 罗智超. 基于黑磷量子点可饱和吸收体的多波长脉冲簇光纤激光器[J]. 中国激光, 2017, 44(7): 0703013.

Liu Meng, Yan Yurong, Wang Xude, Luo Aiping, Xu Wencheng, Luo Zhichao. Black Phosphorus Quantum Dots Saturable Absorber for Dual-Wavelength Pulse Cluster Fiber Laser[J]. Chinese Journal of Lasers, 2017, 44(7): 0703013.

参考文献

[1] Novoselov K, Geim A, Morozov S,et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[2] Bao Q, Zhang H, Wang Y, et al. Atomic layer graphene as saturable absorber for ultrafast pulsed laser[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

[3] Zhang H, Virally S, Bao Q, et al. Z-scan measurement of the nonlinear refractive index of graphene[J]. Optics Letters, 2012, 37(11): 1856-1858.

[4] Zhang H, Bao Q, Tang D, et al. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker[J]. Applied Physics Letters, 2009, 95(14): 141103.

[5] Sun Z, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803-810.

[6] Zhang H, Tang D, Knize R J, et al. Graphene mode locked, wavelength tunable, dissipative soliton fiber laser[J]. Applied Physics Letters, 2010, 96(11): 111112.

[7] Luo Z, Zhou M, Weng J, et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21): 3709-3711.

[8] Martinez A, Fuse K, Yamashita S. Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers[J]. Applied Physics Letters, 2011, 99(12): 121107.

[9] Novoselov K S, Fal′ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.

[10] Yamashita S. A tutorial on nonlinear photonic applications of carbon nanotube and graphene[J]. Journal of Lightwave Technology, 2012, 30(4): 427-447.

[11] Coleman J N, Lotya M, O′Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.

[12] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.

[13] Zhang H, Lu S B, Zheng J, et al. Molybdenum disulfide(MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.

[14] Liu H, Luo A P, Wang F Z, et al. Femtosecond pulse Erbium-doped fiber laser by a few-layer MoS2 saturable absorber[J]. Optics Letters, 2014, 39(15): 4591-4594.

[15] Wang S, Yu H, Zhang H, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544.

[16] Zhang M, Howe R, Woodward R, et al. Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er: fiber laser[J]. Nano Research, 2014, 8(5): 1522-1534.

[17] Wu K, Zhang X Y, Wang J, et al. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber[J]. Optics Letters, 2015, 40(7): 1374-1377.

[18] Mao D, Zhang S, Wang Y, et al. WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 μm[J]. Optics Express, 2015, 23(21): 27509-27519.

[19] Yan P G, Liu A J, Chen Y S, et al. Microfiber-based WS2-film saturable absorber for ultra-fast photonics[J]. Optical Materials Express, 2015, 5(3): 479-489.

[20] Wang K, Wang J, Fan J, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267.

[21] Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.

[22] Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.

[23] Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 817-824.

[24] Hanlon D, Backes C, Doherty E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J]. Nature Communications, 2015, 6: 9563.

[25] Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infra-red and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-11194.

[26] Chen Y, Jiang G, Chen S, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833.

[27] Luo Z C, Liu M, Guo Z N, et al. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser[J]. Optics Express, 2015, 23(15): 20030-20039.

[28] Sotor J, Sobon G, Kowalczyk M, et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 2015, 40(16): 3885-3888.

[29] Qin Z, Xie G, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713-24718.

[30] Sun Z, Xie H, Tang S, et al. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents[J]. Angewandte Chemie International Edition, 2015, 54(39): 11526-11530.

[31] Xu Y, Wang Z, Guo Z, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.

[32] Wang Z T, Xu Y H, Dhanabalan S C, et al. Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser[J]. IEEE Photonics Journal, 2016, 8(5): 1-10.

[33] Zhang H, Tang D Y, Wu X, et al. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser[J]. Optics Express, 2009, 17(15): 12692-12697.

[34] Kerse C, Kalaycoglu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 2016, 537(7618): 84-88.

[35] Zheng X, Chen R Z, Shi G, et al. Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements[J]. Optics Letters, 2015, 40(15): 3480-3483.

[36] Luo Z C, Liu M, Liu H, et al. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber[J]. Optics Letters, 2013, 38(24): 5212-5215.

[37] Liu X M, Soliton formation and evolution in passively mode-locked lasers with ultralong anomalous-dispersion fibers[J]. Physical Review A, 2011, 84(2): 023835.

刘萌, 闫玉蓉, 汪徐德, 罗爱平, 徐文成, 罗智超. 基于黑磷量子点可饱和吸收体的多波长脉冲簇光纤激光器[J]. 中国激光, 2017, 44(7): 0703013. Liu Meng, Yan Yurong, Wang Xude, Luo Aiping, Xu Wencheng, Luo Zhichao. Black Phosphorus Quantum Dots Saturable Absorber for Dual-Wavelength Pulse Cluster Fiber Laser[J]. Chinese Journal of Lasers, 2017, 44(7): 0703013.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!