中国激光, 2017, 44 (7): 0703013, 网络出版: 2017-07-05   

基于黑磷量子点可饱和吸收体的多波长脉冲簇光纤激光器

Black Phosphorus Quantum Dots Saturable Absorber for Dual-Wavelength Pulse Cluster Fiber Laser
作者单位
1 华南师范大学广州市特种光纤光子器件重点实验室, 广东 广州 510006
2 华南师范大学广东省微结构功能光纤与器件工程技术研究中心, 广东 广州 510006
3 淮北师范大学物理与电子信息学院, 安徽 淮北 235000
4 深圳大学光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
摘要
由于其独特的光电特性, 黑磷量子点(BPQDs)获得研究者们的广泛关注。将基于微纳光纤沉积BPQDs的光子器件接入掺铒光纤激光腔内, 利用其可饱和吸收特性和高非线性效应分别获得了单、双波长脉冲簇现象。在单波长脉冲簇状态下, 每簇脉冲包含9个脉冲, 各脉冲之间具有不同的时间间隔; 在双波长脉冲簇状态下, 每个波长分别对应一套脉冲簇序列, 两套脉冲簇序列具有不同的强度和时间间隔。该结果有助于加深人们对多波长光纤激光器及脉冲簇动力学的理解, 也证明了BPQDs可以作为性能优良的可饱和吸收体应用于超快光学领域。
Abstract
Due to their unique optoelectronic properties, recently the black phosphorus quantum dots (BPQDs) has attracted considerable attention. By introducing the microfiber-based BPQDs photonics device into the erbium-doped fiber laser cavity, the single and dual-wavelength pulse cluster phenomena are achieved because of the characteristics of saturable absorption and high nonlinear effect of BPQDs. In the case of single wavelength pulse cluster, each pulse cluster contains 9 pulses, which has different time intervals. While in the case of dual-wavelength pulse cluster, each wavelength corresponds to one sequence of pulse cluster, which has different amplitudes and time intervals. These results help to deepen the understanding of multi-wavelength fiber laser and pulse cluster dynamics, and further demonstrate that the BPQDs can act as the saturable absorber with excellent performance into many fields, such as ultrafast optics.
参考文献

[1] Novoselov K, Geim A, Morozov S,et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[2] Bao Q, Zhang H, Wang Y, et al. Atomic layer graphene as saturable absorber for ultrafast pulsed laser[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

[3] Zhang H, Virally S, Bao Q, et al. Z-scan measurement of the nonlinear refractive index of graphene[J]. Optics Letters, 2012, 37(11): 1856-1858.

[4] Zhang H, Bao Q, Tang D, et al. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker[J]. Applied Physics Letters, 2009, 95(14): 141103.

[5] Sun Z, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803-810.

[6] Zhang H, Tang D, Knize R J, et al. Graphene mode locked, wavelength tunable, dissipative soliton fiber laser[J]. Applied Physics Letters, 2010, 96(11): 111112.

[7] Luo Z, Zhou M, Weng J, et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21): 3709-3711.

[8] Martinez A, Fuse K, Yamashita S. Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers[J]. Applied Physics Letters, 2011, 99(12): 121107.

[9] Novoselov K S, Fal′ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.

[10] Yamashita S. A tutorial on nonlinear photonic applications of carbon nanotube and graphene[J]. Journal of Lightwave Technology, 2012, 30(4): 427-447.

[11] Coleman J N, Lotya M, O′Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.

[12] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.

[13] Zhang H, Lu S B, Zheng J, et al. Molybdenum disulfide(MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.

[14] Liu H, Luo A P, Wang F Z, et al. Femtosecond pulse Erbium-doped fiber laser by a few-layer MoS2 saturable absorber[J]. Optics Letters, 2014, 39(15): 4591-4594.

[15] Wang S, Yu H, Zhang H, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544.

[16] Zhang M, Howe R, Woodward R, et al. Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er: fiber laser[J]. Nano Research, 2014, 8(5): 1522-1534.

[17] Wu K, Zhang X Y, Wang J, et al. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber[J]. Optics Letters, 2015, 40(7): 1374-1377.

[18] Mao D, Zhang S, Wang Y, et al. WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 μm[J]. Optics Express, 2015, 23(21): 27509-27519.

[19] Yan P G, Liu A J, Chen Y S, et al. Microfiber-based WS2-film saturable absorber for ultra-fast photonics[J]. Optical Materials Express, 2015, 5(3): 479-489.

[20] Wang K, Wang J, Fan J, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267.

[21] Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.

[22] Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.

[23] Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 817-824.

[24] Hanlon D, Backes C, Doherty E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J]. Nature Communications, 2015, 6: 9563.

[25] Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infra-red and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-11194.

[26] Chen Y, Jiang G, Chen S, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833.

[27] Luo Z C, Liu M, Guo Z N, et al. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser[J]. Optics Express, 2015, 23(15): 20030-20039.

[28] Sotor J, Sobon G, Kowalczyk M, et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 2015, 40(16): 3885-3888.

[29] Qin Z, Xie G, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713-24718.

[30] Sun Z, Xie H, Tang S, et al. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents[J]. Angewandte Chemie International Edition, 2015, 54(39): 11526-11530.

[31] Xu Y, Wang Z, Guo Z, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.

[32] Wang Z T, Xu Y H, Dhanabalan S C, et al. Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser[J]. IEEE Photonics Journal, 2016, 8(5): 1-10.

[33] Zhang H, Tang D Y, Wu X, et al. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser[J]. Optics Express, 2009, 17(15): 12692-12697.

[34] Kerse C, Kalaycoglu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 2016, 537(7618): 84-88.

[35] Zheng X, Chen R Z, Shi G, et al. Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements[J]. Optics Letters, 2015, 40(15): 3480-3483.

[36] Luo Z C, Liu M, Liu H, et al. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber[J]. Optics Letters, 2013, 38(24): 5212-5215.

[37] Liu X M, Soliton formation and evolution in passively mode-locked lasers with ultralong anomalous-dispersion fibers[J]. Physical Review A, 2011, 84(2): 023835.

刘萌, 闫玉蓉, 汪徐德, 罗爱平, 徐文成, 罗智超. 基于黑磷量子点可饱和吸收体的多波长脉冲簇光纤激光器[J]. 中国激光, 2017, 44(7): 0703013. Liu Meng, Yan Yurong, Wang Xude, Luo Aiping, Xu Wencheng, Luo Zhichao. Black Phosphorus Quantum Dots Saturable Absorber for Dual-Wavelength Pulse Cluster Fiber Laser[J]. Chinese Journal of Lasers, 2017, 44(7): 0703013.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!