光电工程, 2019, 46 (9): 180261, 网络出版: 2019-10-14   

基于深度学习的飞机目标跟踪应用研究

Application of aircraft target tracking based on deep learning
作者单位
1 中国科学院光电技术研究所,四川 成都 610209
2 中国科学院大学,北京 100049
摘要
本文针对飞机目标,提出了基于多域网络(MDNet)的改进网络用于飞机跟踪的快速深度学习(FDLAT)跟踪网络,使用迁移学习弥补目标跟踪的小样本集缺陷。卷积层作为特征提取层,全连接层作为目标和背景的分类层,采用特定的飞机数据集来更新网络参数。训练完成之后,结合回归模型,采用简单的线性更新对飞机进行跟踪,算法实现了飞机旋转、相似目标、模糊目标、复杂环境、尺度变换、目标遮挡以及形态变换等复杂状态的鲁棒跟踪,速度达到平均20.36 f/s,在ILSVRC2015 飞机检测数据集上成功率均值达到0.592,基本满足飞机实时跟踪。
Abstract
In this paper, based on muti-domain network (MDNet), fast deep learning for aircraft tracking (FDLAT) algorithm is proposed to track aircraft target. This algorithm uses feature-based transfer learning to make up the inferiority of small sample sets, uses specific data sets to update parameters of convolutional layers and fully connected layers, and use it to distinguish aircraft from background. After building the training model, we put the aircraft video sets into the model and tracked the aircraft using regression model and a simple line on-line update, to increase the speed while ensuring the accuracy. This algorithm achieves robust tracking for aircraft in rotation, similar targets, fuzzy targets, complex environment, scale transformation, target occlusion, morphological transformation and other complex states, and runs at a speed of 20.36 frames with the overlap reached 0.592 in the ILSVRC2015 detection sets of aircraft, basically meets the real-time application requirement of aircraft tracking.
参考文献

[1] Sivanantham S, Paul N N, Iyer R S. Object tracking algorithm implementation for security applications[J]. Far East Journal of Electronics and Communications, 2016, 16(1): 1–13.

[2] Kwak S, Cho M, Laptev I, et al. Unsupervised object discovery and tracking in video collections[C]//Proceedings of 2015 IEEE International Conference on Computer Vision, 2015: 3173–3181.

[3] 罗海波, 许凌云, 惠斌, 等. 基于深度学习的目标跟踪方法研究现状与展望[J]. 红外与激光工程, 2017, 46(5): 502002.

    Luo H B, Xu L Y, Hui B, et al. Status and prospect of target tracking based on deep learning[J]. Infrared and Laser Engineering, 2017, 46(5): 502002.

[4] Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564–577.

[5] Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012: 1822–1829.

[6] Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596.

[7] 樊香所, 徐智勇, 张建林. 改进粒子滤波的弱小目标跟踪[J]. 光电工程, 2018, 45(8): 170569.

    Fan X S, Xu Z Y, Zhang J L. Dim small target tracking based on improved particle filter[J]. Opto-Electronic Engineering, 2018, 45(8): 170569.

[8] 奚玉鼎, 于涌, 丁媛媛, 等. 一种快速搜索空中低慢小目标的光电系统[J]. 光电工程, 2018, 45(4): 170654.

    Xi Y D, Yu Y, Ding Y Y, et al. An optoelectronic system for fast search of low slow small target in the air[J]. Opto-Electronic Engineering, 2018, 45(4): 170654.

[9] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012: 1097–1105.

[10] Chatfield K, Simonyan K, Vedaldi A, et al. Return of the devil in the details: delving deep into convolutional nets[J]. ar-Xiv:1405.3531 [cs.CV], 2014.

[11] Hyeonseob N, Mooyeol B, Bohyung H. Modeling and Propagating CNNs in a Tree Structure for Visual Tracking[J]. arXiv:1608.07242v1[cs.CV], 2016:1–10.

[12] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651.

[13] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 Conference on Computer Vision and Pattern Recognition, 2014: 580–587.

[14] Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Proceedings of 2016 European Conference on Computer Vision, 2016: 850–865.

[15] Valmadre J, Bertinetto L, Henriques J F, et al. End-to-end representation learning for Correlation Filter based tracking[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[16] Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4293–4302.

[17] Held D, Thrun S, Savarese S. Learning to track at 100 FPS with deep regression networks[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 745–765.

[18] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556[cs.CV], 2014.

[19] Chen K, Tao W B. Once for all: a two-flow convolutional neural network for visual tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(12): 3377–3386.

[20] Leal-Taixé L, Canton-Ferrer C, Schindler C. Learning by tracking: Siamese CNN for robust target association[C]//Proceedings of 2016 Computer Vision and Pattern Recognition Workshops, 2016: 418–425.

[21] Tao R, Gavves E, Smeulders A W M. Siamese instance search for tracking[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1420–1429.

[22] Wang N Y, Li S Y, Gupta A, et al. Transferring rich feature hierarchies for robust visual tracking[J]. arXiv:1501.04587 [cs.CV], 2015.

[23] Zhai M Y, Roshtkhari M J, Mori G. Deep learning of appearance models for online object tracking[J]. arXiv:1607.02568 [cs.CV], 2016.

[24] 王慧燕, 杨宇涛, 张政, 等. 深度学习辅助的多行人跟踪算法[J]. 中国图象图形学报, 2017, 22(3): 349–357.

    Wang H Y, Yang Y T, Zhang Z, et al. Deep-learning-aided multi-pedestrian tracking algorithm[J]. Journal of Image and Graphics, 2017, 22(3): 349–357.

[25] 王晓冬. 视觉角度对游戏可玩性的影响[J]. 河南科技, 2014(7): 12.

[26] Horikoshi K, Misawa K, Lang K. 20-fps motion capture of phase-controlled wave-packets for adaptive quantum control[C]//Proceedings of the 15th International Conference on Ultrafast Phenomena XV, 2006: 175–177.

赵春梅, 陈忠碧, 张建林. 基于深度学习的飞机目标跟踪应用研究[J]. 光电工程, 2019, 46(9): 180261. Zhao Chunmei, Chen Zhongbi, Zhang Jianlin. Application of aircraft target tracking based on deep learning[J]. Opto-Electronic Engineering, 2019, 46(9): 180261.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!