发光学报, 2018, 39 (9): 1207, 网络出版: 2018-09-08  

改性羧甲基壳聚糖复合材料的制备、表征与研究

Preparation, Characterization and Research of Modified Carboxymethyl Chitosan Composite
作者单位
1 长春理工大学 材料科学与工程学院, 吉林 长春 130022
2 长春医学高等专科学校, 吉林 长春 130031
3 中水东北勘测设计研究有限责任公司, 吉林 长春 130061
摘要
为了提高壳聚糖的水溶性及其止血方面的性能, 将壳聚糖(CS)进行羧甲基化改性, 并引入具有抗菌作用的Ag+和TiO2, 制备出羧甲基壳聚糖复合止血材料。首先, 在壳聚糖中引入羧甲基, 制得羧甲基壳聚糖(CMCS), 之后向其中引入Ag+和TiO2, 分别制备出Ag+-CMCS、TiO2-CMCS和Ag+ -TiO2-CMCS复合材料。然后, 采用 FTIR、XRD、SEM等手段对复合材料的结构进行表征。最后, 对复合物的凝血、止血性能进行了测试。实验结果表明: 改性后的羧甲基壳聚糖的IR图谱在3 423 cm-1和1 380 cm-1处出现了羧甲基壳聚糖钠盐的特征吸收峰。改性后的羧甲基壳聚糖在XRD图谱中表现出了金属晶态。CMCS的粒径为14.8 nm左右, Ag+粒径为143.5 nm左右, 纳米TiO2的粒径为267.2 nm左右, 且三者分散的很均匀。Ag+-TiO2-CMCS的凝血、止血效果要优于Ag+-CMCS和TiO2-CMCS, 同时Ag+-CMCS和TiO2-CMCS的凝血、止血效果要优于CMCS。
Abstract
In order to improve the water soluble and the hemostatic performance of chitosan, the chitosan(CS) was modified by carboxymethylation, and Ag+ and TiO2 with antibacterial action were introduced. In this way, carboxymethyl chitosan composite hemostatic material was prepared. Firstly, in chitosan, carboxymethyl was introduced, and carboxymethyl chitosan(CMCS) was prepared, then Ag+ and TiO2 were introduced, and Ag+-CMCS, TiO2-CMCS and Ag+-TiO2-CMCS composites were prepared, respectively. Then, FTIR, XRD and SEM were used to characterize the structure of composites. Finally, the coagulation and hemostatic properties of the complex were tested. There are characteristic absorption peaks of carboxymethyl chitosan sodium salt around 3 423 cm-1 and 1 380 cm-1 in the IR spectra of modified carboxymethyl chitosan. The XRD shows it is metals crystalline. The average diameter of CMCS is about 14.8 nm, Ag+ is 143.5 nm, nanometre TiO2 is 267.2 nm, and all of them are homodisperse. The properties of crour and hemostasis of Ag+-TiO2-CMCS are superior to Ag+-CMCS and TiO2-CMCS, while Ag+-CMCS and TiO2-CMCS also have an advantage over CMCS.
参考文献

[1] 郭苗苗, 浦金辉, 徐丹, 等. 壳聚糖基快速止血材料的研究进展 [J]. 中国医院药学杂志, 2012, 32(1):49-51.

    GUOM M, PU J H, XU D, et al.. The research progress of chitosan fast hemostatic materials [J]. Chin. Hosp. Pharm. J., 2012, 32(1):49-51. (in Chinese)

[2] SALGADO C L, GRENHO L, FERNANDES M H, et al.. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen Nanohydroxyapatite cryogels for bone tissue regeneration [J]. J. Biomed. Mater. Res. Part A, 2016, 104(1):57-70.

[3] 石凉, 汪涛, 吴大洋. 壳聚糖止血材料及最新研究进展 [J]. 蚕业科学, 2009, 35(4):929-934.

    SHI L, WANG T, WU D Y. The latest research progress hemostatic properties of chitosan [J]. Canye Kexue, 2009,35(4):929-934. (in Chinese)

[4] WALTERS B D, STEGEMANN J P. Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales [J]. Acta Biomater., 2014, 10(4):1488-1501.

[5] UITTE DE WILLIGE S, MIEDZAK M, CARTERAM, et al.. Oteolytic and genetic variation of the alpha-2-antiplasmin c-terminus in myocardial infarction [J]. Blood, 2011, 117(24):6694-6701.

[6] XIE H, TEACH J S, BURKE A P, et al.. Laparoscopic repair of inferior vena caval injury using a chitosan-based hemostatic dressing [J]. Am. J. Surg., 2009, 197(4):510-514.

[7] 巴根, 赵贵成, 傅强. 可吸收止血材料的安全性与临床应用 [J]. 第二军医大学学报, 2011, 32(8):911-914.

    BA G, ZHAO G C, FU Q. Absorbable hemostatic materials: safety and clinical application [J]. Acad. J. Second Milit. Med. Univ., 2011, 32(8):911-914. (in Chinese)

[8] 尹刚, 侯春林, 刘万顺, 等. 新型壳聚糖止血粉止血作用的实验研究 [J]. 中国修复重建外科志, 2009, 23(11):1371-1349.

    YIN G, HOU C L, LIU W S, et al.. Experiment study on hemostasis of a new chitosan hemostatic powder [J]. Chin. J. Reparat. Reconstruct. Surg., 2009, 23(11):1371-1349.

[9] 庄金娟, 王香梅. 改性壳聚糖的研究进展及其应用前景 [J]. 天津化工, 2011, 25(2):7-9.

    ZHUANG J J, WANG X M. The research progress and application prospect of modified chitosan [J]. Tianjin Chem. Ind., 2011, 25(2):7-9. (in Chinese)

[10] 孙磊. 高粘度壳聚糖止血材料的制备及其应用性研究 [D]. 北京:中央民族大学, 2012.

    SUN L. Preparation and Application of High Viscosity Chitosan Hemostatic Materials [D]. Beijing: Minzu University of China, 2012. (in Chinese)

[11] MAKOTO A, TAKESHI E, NOBUKO E, et al.. Antioxidant effects of a dietary supplement: reduction of indices of oxidative stress in normal subjects bywater-soluble chitosan [J]. Food Chem. Toxicol., 2009, 47(1):104-109.

[12] PANWAR P, LAMOUR G, MACKENZIE N C W, et al..Changes in structural-mechanical properties and degradability of collagen during aging-associated modifications [J]. J. Biolog. Chem., 2015, 290(38):23291-23306.

[13] BADYLAK S F, FREYTES D O, GILBERT T W. Reprint of: extracellular matrix as a biological scaffold material: structure and function [J]. Acta Biomater., 2015, 23:S17-S26.

[14] 何小松. 改性TiO2光催化杭菌材料的制备与性能研究 [D]. 武汉:武汉理工大学, 2011.

    HE X S. Study on Preparation and Properties of Modified TiO2 Photocatalysis [D]. Wuhan: Wuhan University of Technology, 2011. (in Chinese)

[15] ZHANG H, ZHANG J, SUN R, et al.. Preparation of magnetic and photocatalytic cenosphere deposited with Fe3O4/SiO2/Eu-doped TiO2 core/shell nanoparticles [J]. J. Mater. Res., 2015, 30(23):3700-3709.

董丽丹, 魏长平, 李中田, 汪凤明. 改性羧甲基壳聚糖复合材料的制备、表征与研究[J]. 发光学报, 2018, 39(9): 1207. DONG Li-dan, WEI Chang-ping, LI Zhong-tian, WANG Feng-ming. Preparation, Characterization and Research of Modified Carboxymethyl Chitosan Composite[J]. Chinese Journal of Luminescence, 2018, 39(9): 1207.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!