光学学报, 2020, 40 (6): 0623002, 网络出版: 2020-03-06   

用于中红外波深度亚波长传输的石墨烯间隙等离激元波导 下载: 1274次

Graphene Gap Plasmonic Waveguide for Deep-Subwavelength Transmission of Mid-Infrared Waves
作者单位
1 郑州师范学院物理与电子工程学院, 河南 郑州 450044
2 郑州师范学院物理与电子工程学院量子材料研究中心, 河南 郑州 450044
3 中国科学院上海技术物理研究所红外成像材料与探测器重点实验室, 上海 200083
4 上海大学理学院, 上海 200444
引用该论文

滕达, 王凯, 李哲, 曹清, 唐亚楠, 赵永哲, 刘子怡, 张韵雯, 郭荣珍. 用于中红外波深度亚波长传输的石墨烯间隙等离激元波导[J]. 光学学报, 2020, 40(6): 0623002.

Da Teng, Kai Wang, Zhe Li, Qing Cao, Yanan Tang, Yongzhe Zhao, Ziyi Liu, Yunwen Zhang, Rongzhen Guo. Graphene Gap Plasmonic Waveguide for Deep-Subwavelength Transmission of Mid-Infrared Waves[J]. Acta Optica Sinica, 2020, 40(6): 0623002.

参考文献

[1] Gramotnev D K, Bozhevolnyi S I. Nanofocusing of electromagnetic radiation[J]. Nature Photonics, 2014, 8(1): 13-22.

[2] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

[3] Cao Q, Lalanne P. Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits[J]. Physical Review Letters, 2002, 88(5): 057403.

[4] 陈奕霖, 许吉, 时楠楠, 等. 金属-介质-金属波导布拉格光栅的模式特性[J]. 光学学报, 2017, 37(11): 1123002.

    Chen Y L, Xu J, Shi N N, et al. Mode properties of metal-insulator-metal waveguide Bragg grating[J]. Acta Optica Sinica, 2017, 37(11): 1123002.

[5] Bian Y S, Zheng Z, Zhao X, et al. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration[J]. Optics Express, 2009, 17(23): 21320-21325.

[6] Chen L, Zhang T, Li X, et al. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film[J]. Optics Express, 2012, 20(18): 20535-20544.

[7] Wang W H, Zhou W J, Fu T, et al. Reduced propagation loss of surface plasmon polaritons on Ag nanowire-graphene hybrid[J]. Nano Energy, 2018, 48: 197-201.

[8] Xu J, Shi N N, Chen Y L, et al. TM01 mode in a cylindrical hybrid plasmonic waveguide with large propagation length[J]. Applied Optics, 2018, 57(15): 4043-4047.

[9] Gao Y X, Shadrivov I V. Second harmonic generation in graphene-coated nanowires[J]. Optics Letters, 2016, 41(15): 3623-3626.

[10] Jablan M, Buljan H. Solja i M. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 2009, 80(24): 245435.

[11] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291-1294.

[12] 李勇, 张惠芳, 范天馨, 等. 双介质加载石墨烯表面等离子激元波导的理论分析[J]. 光学学报, 2016, 36(7): 0724001.

    Li Y, Zhang H F, Fan T X, et al. Theoretical analysis of double dielectric loaded graphene surface plasmon polariton[J]. Acta Optica Sinica, 2016, 36(7): 0724001.

[13] Xu W, Zhu Z H, Liu K, et al. Dielectric loaded graphene plasmon waveguide[J]. Optics Express, 2015, 23(4): 5147-5153.

[14] Liu P H, Zhang X Z, Ma Z H, et al. Surface plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 2013, 21(26): 32432-32440.

[15] Dai Y Y, Zhu X L, Mortensen N A, et al. Nanofocusing in a tapered graphene plasmonic waveguide[J]. Journal of Optics, 2015, 17(6): 065002.

[16] Jabbarzadeh F, Habibzadeh-Sharif A. Double V-groove dielectric loaded plasmonic waveguide for sensing applications[J]. Journal of the Optical Society of America B, 2019, 36(3): 690-696.

[17] Liang H W, Zhang L, Zhang S, et al. Gate-programmable electro-optical addressing array of graphene-coated nanowires with sub-10 nm resolution[J]. ACS Photonics, 2016, 3(10): 1847-1853.

[18] Kou J L, Chen J H, Chen Y, et al. Platform for enhanced light-graphene interaction length and miniaturizing fiber stereo devices[J]. Optica, 2014, 1(5): 307-310.

[19] Lu Z L, Zhao W S. Nanoscale electro-optic modulators based on graphene-slot waveguides[J]. Journal of the Optical Society of America B, 2012, 29(6): 1490-1496.

[20] Ye S W, Wang Z S, Tang L F, et al. Electro-absorption optical modulator using dual-graphene-on-graphene configuration[J]. Optics Express, 2014, 22(21): 26173-26180.

[21] 原媛, 谢亚楠, 李鑫. 太赫兹波段石墨烯频率可调贴片天线[J]. 光学学报, 2018, 38(2): 0216001.

    Yuan Y, Xie Y N, Li X. Frequency-tunable graphene patch antenna in terahertz regime[J]. Acta Optica Sinica, 2018, 38(2): 0216001.

[22] 谢亚楠, 刘志坤, 耿莉, 等. 石墨烯微波至太赫兹的特性及天线中的应用[J]. 光学学报, 2015, 35(s1): s116005.

    Xie Y N, Liu Z K, Geng L, et al. Properties of graphene and antenna applications in microwave to THz[J]. Acta Optica Sinica, 2015, 35(s1): s116005.

[23] Gao Y X, Ren G B, Zhu B F, et al. Analytical model for plasmon modes in graphene-coated nanowire[J]. Optics Express, 2014, 22(20): 24322-24331.

[24] Gao Y X, Ren G B, Zhu B F, et al. Single-mode graphene-coated nanowire plasmonic waveguide[J]. Optics Letters, 2014, 39(20): 5909-5912.

[25] Liu J P, Zhai X, Wang L L, et al. Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide[J]. Plasmonics, 2016, 11(3): 703-711.

[26] Hajati M, Hajati Y. High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate[J]. Journal of the Optical Society of America B, 2016, 33(12): 2560-2565.

[27] Teng D, Wang K, Li Z, et al. Graphene-coated elliptical nanowires for low loss subwavelength terahertz transmission[J]. Applied Sciences, 2019, 9(11): 2351.

[28] 翟利, 薛文瑞, 杨荣草, 等. 涂覆石墨烯的电介质纳米并行线的传输特性[J]. 光学学报, 2015, 35(11): 1123002.

    Zhai L, Xue W R, Yang R C, et al. Propagation properties of nano dielectric parallel lines coated with graphene[J]. Acta Optica Sinica, 2015, 35(11): 1123002.

[29] Zhu B F, Ren G B, Yang Y, et al. Field enhancement and gradient force in the graphene-coated nanowire pairs[J]. Plasmonics, 2015, 10(4): 839-845.

[30] Teng D, Wang K, Li Z, et al. Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range[J]. Optics Express, 2019, 27(9): 12458-12469.

[31] Wu D, Tian J P. Study on the plasmonic characteristics of bow-tie type graphene-coated nanowire pair[J]. Optik, 2018, 156: 689-695.

[32] Hajati M, Hajati Y. Plasmonic characteristics of two vertically coupled graphene-coated nanowires integrated with substrate[J]. Applied Optics, 2017, 56(4): 870-875.

[33] 卫壮志, 薛文瑞, 彭艳玲, 等. 涂覆石墨烯的三根电介质纳米线波导的模式特性[J]. 光学学报, 2019, 39(1): 0124001.

    Wei Z Z, Xue W R, Peng Y L, et al. Mode characteristics of waveguides based on three graphene-coated dielectric nanowires[J]. Acta Optica Sinica, 2019, 39(1): 0124001.

[34] Jiang J, Zhang D H, Zhang B L, et al. Interaction between graphene-coated nanowires revisited with transformation optics[J]. Optics Letters, 2017, 42(15): 2890-2893.

[35] Chen M, Sheng P C, Sun W, et al. A symmetric terahertz graphene-based hybrid plasmonic waveguide[J]. Optics Communications, 2016, 376: 41-46.

[36] Liu J P, Zhai X, Wang L L, et al. Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range[J]. Optics Express, 2016, 24(5): 5376-5386.

[37] Ye L F, Sui K H, Liu Y H, et al. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation[J]. Optics Express, 2018, 26(12): 15935-15947.

[38] Wu D, Tian J P, Yang R C. Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate[J]. Journal of Nonlinear Optical Physics & Materials, 2018, 27(2): 1850013.

[39] Zhang T, Chen L, Li X. Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies[J]. Optics Express, 2013, 21(18): 20888-20899.

[40] Hanson G W. Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide[J]. Journal of Applied Physics, 2008, 104(8): 084314.

[41] Oulton R F, Sorger V J, Genov D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics, 2008, 2(8): 496-500.

[42] Berini P. Figures of merit for surface plasmon waveguides[J]. Optics Express, 2006, 14(26): 13030-13042.

[43] Kuzmin D A, Bychkov I V, Shavrov V G, et al. Transverse-electric plasmonic modes of cylindrical graphene-based waveguide at near-infrared and visible frequencies[J]. Scientific Reports, 2016, 6: 26915.

[44] 万鹏, 杨翠红. 石墨烯TE模表面等离子体波和表面等离子体波导的特性[J]. 光学学报, 2017, 37(11): 1124002.

    Wan P, Yang C H. Properties of graphene TE mode surface plasmons and surface plasmon waveguides[J]. Acta Optica Sinica, 2017, 37(11): 1124002.

滕达, 王凯, 李哲, 曹清, 唐亚楠, 赵永哲, 刘子怡, 张韵雯, 郭荣珍. 用于中红外波深度亚波长传输的石墨烯间隙等离激元波导[J]. 光学学报, 2020, 40(6): 0623002. Da Teng, Kai Wang, Zhe Li, Qing Cao, Yanan Tang, Yongzhe Zhao, Ziyi Liu, Yunwen Zhang, Rongzhen Guo. Graphene Gap Plasmonic Waveguide for Deep-Subwavelength Transmission of Mid-Infrared Waves[J]. Acta Optica Sinica, 2020, 40(6): 0623002.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!