中国激光, 2016, 43 (9): 0905002, 网络出版: 2018-05-25   

基于普适模型的无波前探测自适应光学系统仿真与分析

Simulation and Analysis of General Model-Based Wave-Front Sensorless Adaptive Optics System
作者单位
1 中国科学院安徽光学精密机械研究所大气成分与光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
摘要
为了提高基于普适模型的无波前探测自适应光学(AO)算法的收敛性能,建立了一套基于Zernike模式的127单元变形镜AO系统仿真模型。以峰值斯特列尔比(Sr)和提出的快速稳定收敛百分比为评价标准,研究不同湍流强度下扰动系数、Zernike模式数、斜率因子对校正效果和收敛速度的影响,验证了该仿真系统对静态畸变波前良好的校正能力。结果表明,扰动系数小于0.01时系统可以稳定收敛;增加Zernike模式数可以提高系统收敛时的Sr,但同时收敛速度会有所降低。提出的改进矢量化斜率因子,可以有效提升系统在一次迭代后的校正效果,特别是对大畸变波前具有较强的适应性。
Abstract
To improve the convergence ability of a wave-front sensorless adaptive optics (AO) algorithm using a general model-based approach, an AO system simulation model based on Zernike modes is established with a 127-elements deformable mirror (DM). Using peak Strehl ratio (Sr) and the proposed fast-steady-convergence percentage as evaluation criterion, good correction capability for static distorted wave-front is verified by analyzing the impact of different perturbation coefficient, the number of Zernike modes, and slope factor on correction effect and convergence speed under different turbulence intensity. The results show that when the perturbation coefficient is less than 0.01, the system can converge steadily and increasing the number of Zernike modes can ascend Sr of the convergence while it will sacrifice some convergence speed. A modified vector slope factor is put forward, and the system correction can be improved efficiently after the first iteration. For the large distorted wavefront has strong adaptability especially.
参考文献

[1] Tyson R K. Principles of adaptive optics[M].San Diego: Academic Press, 1991.

[2] 龚知本. 激光大气传输研究若干问题进展[J]. 量子电子学报, 1998, 15(2): 114-133.

    Gong Zhiben. Some research progress on high-energy laser propagation in atmosphere[J]. Chinese Journal of Quantum Electronics, 1998, 15(2): 114-133.

[3] 马慧敏. 激光大气传输SPGD自适应光学校正仿真研究[D]. 合肥: 中国科学院合肥物质科学研究院, 2012: 59-70.

    Ma Huimin. Numerical simulation research of SPGD adaptive correction for laser propagation in the atmosphere[D]. Hefei: Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2012: 59-70.

[4] Vorontsov M A, Carhart G W. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907-909.

[5] Carhart G W, Ricklin J C, Sivokon V P, et al. Parallel perturbation gradient descent algorithm for adaptive wavefront correction[C]. SPIE, 1997, 3126: 221-227.

[6] Vorontsov M A, Carhart G W, Cohen M, et al. Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration[J]. Journal of the Optical Society of America A, 2000,17(8): 1440-1453.

[7] 杨慧珍, 陈波, 李新阳, 等. 自适应光学系统随机并行梯度下降控制算法实验研究[J]. 光学学报, 2008, 28(2): 205-210.

    Yang Huizhen, Chen Bo, Li Xinyang, et al. Experiment demonstration of stochastic parallel gradient algorithm for adaptive optics system[J]. Acta Optica Sinica, 2008, 28(2): 205-210.

[8] Yang P, Ao M W, Liu Y, et al. Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients[J]. Optical Express,2007, 15(25): 17051-17062.

[9] 杨平, 敖明武, 刘渊, 等. 基于Zerniek模式系数的自适应光学遗传算法[J]. 中国激光, 2008, 35(3): 367-372.

    Yang Ping, Ao Mingwu, Liu Yuan, et al. Adaptive optics genetic algorithm based on Zernike mode coefficient[J]. Chinese J Lasers, 2008, 35(3): 367-372.

[10] Zommer S, Ribak E N, Lipson S G, et al. Simulated annealing in ocular adaptive optics[J]. Optics Letters, 2006, 31(7): 939-941.

[11] Booth M J. Wave front sensor-less adaptive optics: a model-based approach using sphere packing[J]. Optics Express, 2006, 14(4): 1339-1352.

[12] Song H, Fraanje R, Schitter G, et al. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system[J]. Optics Express, 2010, 18(23): 24070-24084.

[13] Huang L H, Rao C H. Wavefront sensorless adaptive optics: a general model-based approach[J]. Optics Express, 2009, 19(1): 371-379.

[14] 杨慧珍, 吴健, 龚成龙. 基于模型的无波前探测自适应光学系统[J]. 光学学报, 2014, 34(8): 0801002.

    Yang Huizhen, Wu Jian, Gong Chenglong. Model-based sensorless adaptive optics system[J]. Acta Optics Sinica, 2014, 34(8): 0801002.

[15] Huang L H. Coherent beam combination using a general model-based method[J]. Chinese Physics Letters, 2014, 31(9): 094205.

[16] Noll R J. Zernike polynomials and atmosphere turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211.

[17] Jiang M S, Zhou C Q, Wang W C, et al. Comparative analysis of Zernike aberrations generation with deformable mirrors for ocular adaptive optics[J]. Journal of Modern Optics, 56(18): 1741-1746.

[18] 张韵华, 奚梅成. 数值计算方法和算法[M]. 北京: 科学出版社, 2002: 63-73.

[19] Schmidt J D. Numerical simulation of optical wave propagation with examples in Matlab[M]. Washington D C: SPIE Press, 2010: 150-183.

王志强, 张鹏飞, 乔春红, 张京会, 范承玉. 基于普适模型的无波前探测自适应光学系统仿真与分析[J]. 中国激光, 2016, 43(9): 0905002. Wang Zhiqiang, Zhang Pengfei, Qiao Chunhong, Zhang Jinghui, Fan Chengyu. Simulation and Analysis of General Model-Based Wave-Front Sensorless Adaptive Optics System[J]. Chinese Journal of Lasers, 2016, 43(9): 0905002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!