光学 精密工程, 2018, 26 (5): 1070, 网络出版: 2018-08-14   

高Q值微机电陀螺的快速起振控制

Rapid start-up control of high Q-factor MEMS gyroscope
作者单位
清华大学 精密仪器系 导航工程中心, 北京 100084
摘要
针对高Q值微机电陀螺的快速起振问题, 研究其驱动轴控制方法。分析了高Q值谐振器的振动相位随频率的变化率, 阐明了锁相环方案启动时间长且对初始频率偏差敏感的原因。用平均法推导了自激振荡方案下起振初始阶段振幅随时间的变化规律。提出了“自激-锁相”驱动轴控制方案, 先采用自激振荡方式使陀螺快速起振, 再转为锁相环方式使振动频率精确稳定。经实验测试, 采用锁相环方案, 当初始频率偏差在±10 Hz以内, 陀螺的启动时间为2 s; 采用自激-锁相方案, 只要初始频率偏差在±1 000 Hz以内, 陀螺均可在0.3 s内达到频率误差小于0.01%, 在0.4 s内达到振幅误差小于0.1%。“自激-锁相”方案大幅度缩短了陀螺的启动时间, 而且对陀螺初始频率的设置偏差不敏感, 对环境温度变化的适应性好, 适用于微机电陀螺的批量生产。
Abstract
The control method of the drive axis was investigated with the goal of rapid startup of the MEMS gyroscope with a high Q-factor. The change rate of the vibration phase of the high Q-factor resonator with frequency was analyzed, and the reason for the long starting time of the phase-locked loop scheme in addition to its sensitivity to the initial frequency deviation was elucidated. The variation rule of the amplitude at the initial stage of the self-excited oscillation scheme with time was deduced by using the averaging method. A control scheme that combines the self-exited oscillation loop and the phase-locked loop (SEOL-PLL) of the drive axis was proposed. The self-excited oscillation mode was used to quickly start the gyroscope, and then the phase-locked loop was used to maintain the accuracy and stability of the vibration frequency. In the experiment, when the initial frequency deviation of the PLL is less than ±10 Hz, the starting time of the gyroscope is 2 s. Whereas with the SEOL-PLL scheme, a frequency error of 0.01% is achieved in 0.3 s and an amplitude error of 0.1% is achieved in 0.4 s, as long as the initial frequency deviation is within ±1 000 Hz. The “SEOL-PLL” solution considerably reduces the start-up time and is insensitive to the initial frequency deviation of the gyroscope. It is therefore suitable for the mass production of MEMS gyroscope and has a good adaptability to ambient temperature change.
参考文献

[1] SEOK J, TIERSTEN H F, SCARTON H A. An analysis of a vibratory angular-rate gyroscope using polarized piezoceramic bimorph plates. Part 2: solution procedure for the gyroscope with superposed angular velocity [J]. Journal of Sound and Vibration, 2005, 280(1-2): 289-310.

[2] ACAR C, SCHOFIELD A R, TRUSOV A A, et al.. Environmentally robust MEMS vibratory gyroscopes for automotive applications [J]. IEEE Sensors Journal, 2009, 9(12): 1895-1906.

[3] 陈志勇, 高钟毓, 张嵘. 微机械陀螺驱动环路的研究 [C]. 中国惯性技术学会第四届学术年会论文集, 2000: 134-138.

    CHEN ZH Y, GAO ZH Y, ZHANG R. Research on the driving loop of micromachined gyroscope [C]. The 4th Symposium of Chinese Society of Inertial Technology, 2000: 134-138. (in Chinese)

[4] 陈志勇, 刘悦琛, 张嵘, 等. 微机电陀螺耦合刚度的辨识 [J]. 光学 精密工程, 2016, 24(9): 2240-2247.

    CHEN ZH Y, LIU Y CH, ZHANG R, et al.. Identification of coupling stiffness for MEMS gyroscope [J]. Opt. Precision Eng., 2016, 24(9): 2240-2247. (in Chinese)

[5] FEI J, BATUR C. Robust adaptive control for a MEMS vibratory gyroscope [J]. The International Journal of Advanced Manufacturing Technology, 2009, 42(3-4): 293-300.

[6] PARK S, HOROWITZ R. Adaptive control for the conventional mode of operation of MEMS gyroscopes [J]. Journal of Microelectromechanical Systems, 2003, 12(1): 101-108.

[7] 杨亮, 苏岩, 裘安萍, 等. 具有增益补偿功能的微机械陀螺数字化驱动闭环 [J]. 光学 精密工程, 2014, 22(1): 109-116.

    YANG L, SU Y, QIU A P, et al.. Digital drive closed-loop with gain compensation for micro-machined gyroscope [J]. Opt. Precision Eng., 2014, 22(1): 109-116. (in Chinese)

[8] LELAND R P. Adaptive control of a MEMS gyroscope using Lyapunov methods [J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 278-283.

[9] OBOE R, ANTONELLO R, LASALANDRA E, et al.. Control of a Z-axis MEMS vibrational gyroscope [J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(4): 364-370.

[10] 刘晓为, 莫冰, 谭晓昀, 等. 基于锁相技术的微机械陀螺闭环驱动电路 [J]. 纳米技术与精密工程, 2008, 6(6): 458-463.

    LIU X W, MO B, TAN X Y, et al.. Closed-loop drive circuit for the micromachined gyroscope based on the phase-locked technology [J]. Nanotechnology and Precision Engineering, 2008, 6(6): 458-463. (in Chinese)

[11] 罗兵, 王安成, 吴美平. 基于相位控制的硅微机械陀螺驱动控制技术 [J]. 自动化学报, 2012, 38(2): 206-212.

    LUO B, WANG A CH, WU M P. A drive control scheme based on phase-control for silicon micromechanical gyroscopes [J]. Acta Automatica Sinica, 2012, 38(2): 206-212. (in Chinese)

[12] 谭晓昀, 雷龙刚, 王冠石. 电容式微机械陀螺双环路闭环驱动电路研究 [J]. 传感技术学报, 2010, 23(10): 1449-1453.

    TAN X Y, LEI L G, WANG G SH. The research on the dual closed-loop driving circuits for micro-machined gyroscope [J]. Chinese Journal of Sensors and Actuators, 2010, 23(10): 1449-1453. (in Chinese)

[13] 王展飞, 鲁文高, 李峰, 等. MEMS振动陀螺闭环自激驱动的理论分析及数值仿真 [J]. 传感技术学报, 2008, 21(8): 1337-1342.

    WANG ZH F, LU W G, LI F, et al.. Theoretical analysis and numerical simulation of closed-loop self-oscillation system for MEMS vibratory gyroscopes [J]. Chinese Journal of Sensors and Actuators, 2008, 21(8): 1337-1342. (in Chinese)

[14] LELAND R P. Adaptive mode tuning for vibrational gyroscopes [J]. IEEE Transactions on Control Systems Technology, 2003, 11(2): 242-247.

[15] 付强, 尹亮, 陈伟平, 等. 带温度补偿的低温漂石英微机械陀螺接口ASIC设计 [J]. 光学 精密工程, 2017, 25(7): 1843-1849.

    FU Q, YIN L, CHEN W P, et al.. ASIC design of micro-mechanical gyro interface of low temperature drift quartz with temperature compensation [J]. Opt. Precision Eng., 2017, 25(7): 1843-1849. (in Chinese)

[16] 夏国明, 杨波, 王寿荣. 硅微机械陀螺自激驱动数字化技术 [J]. 光学 精密工程, 2011, 19(3): 635-640.

    XIA G M, YANG B, WANG SH R. Digital self-oscillation driving technology for silicon micro machined gyroscopes [J]. Opt. Precision Eng., 2011, 19(3): 635-640. (in Chinese)

[17] 刘恒, 刘显学, 张凤田, 等. 微机械振动陀螺闭环自激驱动理论分析及验证 [J]. 重庆大学学报, 2011, 34(10): 136-141.

    LIU H, LIU X X, ZHANG F T, et al.. Theoretic analysis and verification of the closed-loop self-oscillation for an MEMS gyroscope [J]. Journal of Chongqing University, 2011, 34(10): 136-141. (in Chinese)

陈志勇, 宋霖, 张嵘, 周斌, 魏琦. 高Q值微机电陀螺的快速起振控制[J]. 光学 精密工程, 2018, 26(5): 1070. CHEN Zhi-yong, SONG Lin, ZHANG Rong, ZHOU Bin, WEI Qi. Rapid start-up control of high Q-factor MEMS gyroscope[J]. Optics and Precision Engineering, 2018, 26(5): 1070.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!