中国激光, 2014, 41 (11): 1105006, 网络出版: 2014-10-08   

新型的分段结构光纤倏逝波传感器

Novel Segmented Structure Optic Fiber Evanescent Wave Sensor
作者单位
中国计量学院光学与电子科技学院, 浙江 杭州 310018
摘要
提出一种基于倏逝波吸收原理的分段结构光纤倏逝波传感器。运用光束传播法(BPM)对分段和直形波导模型进行数值模拟,分段波导中高阶模在每次分段的第一个界面上被反复地激发。分析不同结构、纤芯直径和溶液浓度对传感器灵敏度的影响,通过化学腐蚀方法制备出不同结构参数的倏逝波传感器,并用不同浓度亚甲基蓝溶液对传感器的灵敏度特性进行实验验证。实验结果表明,在传感直径相同的条件下,传感长度为5 cm分段结构光纤倏逝波传感器的灵敏度为0.0135 L/mmol,优于传感长度为6 cm的传统的单一直形传感器的灵敏度0.0102 L/mmol。分段结构光纤倏逝波传感器能有效地激发光纤中低阶模到高阶模的转变,从而提高传感器的灵敏度。实验结果与模拟和理论结果相符。因此,分段结构光纤倏逝波传感器相对于传统的单一的直形传感器不仅具有较高的灵敏度,且机械强度较高,在物质光谱检测方面有着潜在的应用。
Abstract
Based on evanescent wave absorbed theory, a segmented structure optic fiber sensor is proposed. The waveguide models of the segmented structure and straight are simulated and analyzed by using beam propagation method (BPM), which shows the high-order modes are excited repeatedly at the first transition of the each segmented region in the segmented structure. The effects of the different structures, core diameters and concentrations of solution on the sensitivity of the sensors are investigated, and the sensitivity is tested by using the different concentrations of the methylene blue solutions. The experimental results show that, with the fixed core diameters, the sensing region length of segmented structure sensors is 5 cm, which is shorter than that of the conventional single straight sensor 6 cm. However, the sensitivity of segmented structure sensors is 0.0135 L/mmol, which is higher than that of conventional single straight sensor 0.0102 L/mmol. The segmented structure evanescent wave sensor can effectively stimulate the fiber low-order modes to the high-order modes, and than the sensitivity is enhanced. The results are consistent with theoretical models and simulation analysis. The proposed sensor not only has a high sensitivity, but it is robust due to the larger core diameters and shorter length of the segmented region, which is suitable for materials spectrum measurements.
参考文献

[1] Raikar U S, Kulkarni V K, Lalasangi A S, et al.. Evanescent field absorption sensor for detection of copper (II) in water using multimode optical fiber[J]. Optoelectronics Letters, 2009, 5(3): 224-226.

[2] 廖国珍, 张军, 蔡祥, 等. 基于石墨烯的全光纤温度传感器的研究[J]. 光学学报, 2013, 33(7): 0706004.

    Liao Guozhen, Zhang Jun, Cai Xiang, et al.. All-fiber temperature sensor based on graphene[J]. Acta Optica Sinica, 2013, 33(7): 0706004.

[3] 白春河, 罗云瀚, 陈哲, 等. 基于侧边抛磨光纤倏逝场的折射率传感特性[J]. 光子学报, 2013, 42(10): 1182-1186.

    Bai Chunhe, Luo Yunhan, Chen Zhe, et al.. Characteristics of side-polished fiber in refractive index sensing[J]. Acta Optica Sinica, 2013, 42(10): 1182-1186.

[4] Xiong Y, Zhu D, Duan C, et al.. Small-volume fiber-optic evanescent-wave absorption sensor for nitrite determination[J]. Analytical and Bioanalytical Chemistry, 2010, 396(2): 943-948.

[5] Cao Y, Jin W, Ho L H, et al.. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers[J]. Opt Lett, 2012, 37(2): 214-216.

[6] 初凤红, 王计元. 基于倏逝波吸收的塑料光纤葡萄糖传感特性[J]. 中国激光, 2012, 39(5): 0505002.

    Chu Fenghong, Wang Jiyuan. Glucose evanescence absorption sensor by using plastic optical fiber[J]. Chinese J Lasers, 2012, 39(5): 0505002.

[7] Lu P, Harris J, Wang X, et al.. Tapered-fiber-based refractive index sensor at an air/solution interface[J]. Appl Opt, 2012, 51(30): 7368-7373.

[8] 李英, 胡艳军. 用金纳米棒修饰的亚微米光纤定点输送微颗粒的研究[J]. 激光与光电子学进展, 2013, 50(7): 070602.

    Li Ying, Hu Yanjun. Position designated delivery of microparticles using a submicron fiber decorated with gold nanorads[J]. Laser & Optoelectronics Progress, 2013, 50(7): 070602.

[9] 陈耀飞, 韩群, 何洋, 等. 基于无芯光纤的单模多模单模折射率传感器的研究[J]. 中国激光, 2013, 40(9): 0905001.

    Chen Yaofei, Han Qun, He Yang, et al.. Study of single mode-multimode-single mode refractive index sensor based on no core fiber[J].Chinese J Lasers, 2013, 40(9): 0905001.

[10] Scorsone E, Christie S, Persaud K C, et al.. Fibre-optic evanescent sensing of gaseous ammonia with two forms of a new near-infrared dye in comparison to phenol red[J]. Sensors and Actuators B: Chemical, 2003, 90(1-3): 37-45.

[11] Maraldo D, Shankar P M, Mutharasan R. Measuring bacterial growth by tapered fiber and changes in evanescent field[J]. Biosensors and Bioelectronics, 2006, 21(7): 1339-1344.

[12] 王真真, 周静涛, 王春霞, 等. 基于光纤倏逝波传感器的磷酸根离子检测[J]. 光电子·激光, 2011, 22(11): 1683-1687.

    Wang Zhenzhen, Zhou Jingtao, Wang Chunxia, et al.. Measurement of phosphate anion based on optical fiber evanescent wave sensor[J]. Journal of Optoelectronics·Laser, 2011, 22(11): 1683-1687.

[13] Wu Y, Deng X, Li F, et al.. Less-mode optic fiber evanescent wave absorbing sensor: Parameter design for high sensitivity liquid detection[J]. Sensors and Actuators B: Chemical, 2007, 122(1): 127-133.

[14] 庄须叶, 吴一辉, 王淑荣, 等. 新结构D形光纤倏逝场传感器[J]. 光学 精密工程, 2008, 16(10): 1936-1940.

    Zhuang Xuye, Wu Yihui, Wang Shurong, et al.. Optical fiber evanescent field sensor based on new type D-shaped fiber[J]. Optics and Precision Engineering, 2008, 16(10): 1936-1940.

[15] Markos D J, Ipson B L, Smith K H, et al.. Controlled core removal from a D-shaped optical fiber[J]. Appl Opt, 2003, 42(36): 7121-7125.

[16] Villatoro J, Monzón-Hernández D, Luna-Moreno D. In-line optical fiber sensors based on cladded multimode tapered fibers[J]. Appl Opt, 2004, 43(32): 5933-5938.

[17] Matejec V, Chomat M, Pospíilová M, et al.. Optical fiber with novel geometry for evanescent-wave sensing[J]. Sensors and Actuators B: Chemical, 1995, 29(1): 416-422.

[18] Matejec V, Chomát M, Hayer M, et al.. Improvement of the sectorial fiber for evanescent-wave sensing[J]. Sensors and Actuators B: Chemical, 1997, 39(1): 334-338.

[19] Gupta B D, Dodeja H, Tomar A K. Fibre-optic evanescent field absorption sensor based on a U-shaped probe[J]. Optical and Quantum Electronics, 1996, 28(11): 1629-1639.

[20] A N Chester. Optical Fiber Sensors[M]. Dordrecht: Martinus Nijhoft Publishers, 1987.

[21] Gloge D. Weakly guiding fibers[J]. Appl Opt, 1971, 10(10): 2252-2258.

[22] Grazia A, Riccardo M, Ciaccheri F L. Evanescent wave absorption spectroscopy by means of bi-tapered multimode optical fibers[J]. Appl Spectro, 1998, 52(4): 546-551.

[23] Ruddy V, Shaw G. Mode coupling in large-diameter polymer-clad silica fibers[J]. Appl Opt, 1995, 34(6): 1003-1006.

[24] Jiao L Z, Dong D M, Zheng W G, et al.. Research on fiber-optic etching method for evanescent wave sensors[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(8): 740-743.

楼俊, 许宏志, 黄杰, 李本冲, 沈为民. 新型的分段结构光纤倏逝波传感器[J]. 中国激光, 2014, 41(11): 1105006. Lou Jun, Xu Hongzhi, Huang Jie, Li Benchong, Shen Weimin. Novel Segmented Structure Optic Fiber Evanescent Wave Sensor[J]. Chinese Journal of Lasers, 2014, 41(11): 1105006.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!