中国激光, 2009, 36 (4): 779, 网络出版: 2009-04-27   

飞秒激光与宽禁带物质相互作用过程中光子-电子-声子之间的微能量传导: I:光子吸收过程 下载: 554次

Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part Ⅰ: photon absorption
作者单位
1 北京理工大学 三院 机械制造及其自动化系, 北京 100081
2 北京理工大学 国际教育合作学院, 北京 100081
3 Laser-Based Manufacturing Laboratory Department of Mechanical and Aerospace Engineering,Missouri University of Science & Technology (formerly University of Missouri-Rolla) Rolla, MO 65409, USA
摘要
飞秒激光产生的新现象引导了超快科学新领域的发展,对这些现象中存在的极其复杂的非线性、非平衡过程的理论解释是一个巨大挑战。虽然以飞秒激光为工具已取得大量成功实验结果,但在飞秒激光与物质相互作用方面尚不存在一个完备的理论模型可以全面描述它。本文综述了近期对飞秒激光,特别是功率密度在1013~1014 W/cm2的激光脉冲与宽禁带物质相互作用中光子吸收电离过程的理论研究进展,在该光子-电子相互作用的过程中主要考虑了多光子电离和雪崩电离。
Abstract
The new phenomena induced by femtosecond lasers lead to the new area of ultrafast science. It is a significant challenge to explain the phenomena associated with complex non-equilibrium and non-linear processes. Although there is a growing body of experimental observation, a comprehensive model remains undeveloped. We review the challenges in understanding the photon absorption stage mainly for the femtosecond ablation of wide bandgap materials at the intensities of 1013~1014 W/cm2. Major opinions and challenges in ionization mechanisms are presented by primarily considering multiphoton ionization and avalanche ionization.
参考文献

[1] . Z. Zhao, J. R. Qiu, X. W. Jiang et al.. Direct writing computer-generated holograms on metal film by an infrared femtosecond laser[J]. Opt. Express, 2005, 13(6): 2089-2092.

[2] . Vorobyev, V. S. Makin, C. Guo. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals[J]. J. Appl. Phys., 2007, 101(3): 034903.

[3] 王德飞,于继平,郭春风 等. 超短脉冲激光烧蚀金属薄膜材料的热效应分析[J]. 中国激光, 2008, 35(10):1579~1584

    D. F. Wang, J. P. Yu, C. F. Guo et al.. Thermal effect analysis of metal film ablation by Ultra-Short laser pulses[J]. Chinese J. Lasers, 2008, 35(10):1579~1584

[4] . Y. Vorobyev, C. Guo. Colorizing metals with femtosecond laser pulses[J]. Appl. Phys. Lett., 2008, 92(4): 041914.

[5] . Guo, S. Xiao, X. Zhai et al.. Micro lens fabrication by means of femtosecond two photon photopolymerization[J]. Opt. Express, 2006, 14(2): 810-816.

[6] . Tan, Y. Li, F. Qi, H. Yang et al.. Reduction in feature size of two-photon polymerization using SCR500[J]. Appl. Phys. Lett., 2007, 90(7): 071106.

[7] T. W. Trelenberg, L. N. Dinh, B. C. Stuart et al.. Femtosecond pulsed laser ablation of metal alloy and semiconductor targets[J]. Appl. Surf. Sci., 2004, 229(1~4): 268~274

[8] . Y. Choi, C. P. Grigoropoulos. Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon[J]. J. Appl. Phys., 2002, 92(9): 4918-4925.

[9] G. Dumitru, V. Romano, H. P. Weber et al.. Ablation of carbide materials with femtosecond pulses[J]. Appl. Surf. Sci., 2003, 205(1~4): 80~85

[10] . Dumitru, V. Romano, H. P. Weber et al.. Femtosecond ablation of ultrahard materials[J]. Appl. Phys. A, 2001, 74(6): 729-739.

[11] . Q. Jia, H. X. Chen, M. Huang et al.. Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals[J]. Phys. Rev. B, 2006, 73(5): 054105.

[12] . Hughes, W. Yang, D. Hewak. Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass[J]. Appl. Phys. Lett., 2007, 90(13): 131113.

[13] . Vogel, J. Noack, G. Hüttman et al.. Mechanisms of femtosecond laser nanosurgery of cells and tissues[J]. Appl. Phys. B, 2005, 81(8): 1015-1047.

[14] M. Bao, W. Wang. Future of microelectromechanical systems[J]. Sensors & Actuators A, 1996, 56(1~2): 135~141

[15] . P. Veiko. Laser microshaping, fundamentals, practical applications, and future prospect[J]. RIKEN Review, 2001, 32: 11-18.

[16] G. H. Cheng, Q. Liu, Y. S Wang et al.. Writing of internal gratings in optical glass with a femtosecond laser[J]. Chin. Opt. Lett., 2004, 2(2): 119~121

[17] . Cheng, K. Sugioka, K. Midorikawa. Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing[J]. Opt. Lett., 2004, 29(17): 2007-2009.

[18] 王维,饶云江,唐庆涛 等. 飞秒激光加工的微型光纤法布里-珀罗干涉传感器[J].中国激光,2007, 34(12): 1660~1664

    W. Wang, Y. J. Rao, Q. T. Tang et al.. Micromachining of an in-fiber extrinsic Fabry-Pérot interferometric sensor by using a femtosecond laser[J]. Chinese J. Lasers, 2007, 34(12): 1660~1664

[19] . Jegenyes, Z. Toth, B. Hopp et al.. Femtosecond pulsed laser deposition of diamond-like carbon films: The effect of double laser pulses[J]. Appl. Surf. Sci., 2006, 252(13): 4667-4671.

[20] . Luo, H. L. Xu, S. A. Hosseini et al.. Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy[J]. Appl. Phys. B, 2006, 82(1): 105-109.

[21] . Hanada, K. Sugioka, K. Midorikawa. Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application[J]. Appl. Phys. A, 2008, 90(4): 603-607.

[22] . L. Hoy, N. J. Durr, P. Chen et al.. Miniaturized probe for femtosecond laser microsurgery and two-photon imaging[J]. Opt. Express, 2008, 16(13): 9996-10005.

[23] . S. Banks, M. D. Feit, A. M. Rubenchik et al.. Material effects in ultra-short pulse laser drilling of metals[J]. Appl. Phys. A, 1999, 69(7): S377-S380.

[24] . V. Lugovskoy, I. Bray. Ultrafast electron dynamics in metals under laser irradiation[J]. Phys. Rev. B, 1999, 60(5): 3279-3288.

[25] . Rethfeld, A. Kaiser, M. Vicanek et al.. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation[J]. Phys. Rev. B, 2002, 65(21): 214303.

[26] Y. A. Il′insky, L. V. Keldysh. Electromagnetic Response of Material Media[M]. New York: Plenum, 1994

[27] . C. Jones, P. Braunlich, R. T. Casper et al.. Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials[J]. Opt. Eng., 1989, 28(10): 1039-1068.

[28] . H. Niemz. Threshold dependence of laser-induced optical breakdown on pulse duration[J]. Appl. Phys. Lett., 1995, 66(10): 1181-1183.

[29] . Lenzner, J. Krüger, S. Sartania et al.. Femtosecond optical breakdown in dielectrics[J]. Phys. Rev. Lett., 1998, 80(18): 4076-4079.

[30] . V. Linde, H. Schüler. Breakdown threshold and plasma formation in femtosecond laser-solid interaction[J]. J. Opt. Soc. Am. B, 1996, 13(1): 216-222.

[31] . H. Loesel, M. H. Niemz, J. F. Bille et al.. Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model[J]. IEEE J. Quant. Electron, 1996, 32(10): 1717-1722.

[32] . P. Pronko, S. K. Dutta, D. Du et al.. Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses[J]. J. App. Phys., 1995, 78(10): 6233-6240.

[33] . Korte, S. Adams, A. Egbert et al.. Sub-diffraction limited structuring of solid targets with femtosecond laser pulses[J]. Opt. Express, 2000, 7(2): 41-49.

[34] . G. Fujimoto, J. M. Liu, E. P. Ippen et al.. Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures[J]. Phys. Rev. Lett., 1984, 53(19): 1837-1840.

[35] . E. Elsayed-Ali, T. B. Norris, M. A. Pessot et al.. Time-resolved observation of electron-phonon relaxation in copper[J]. Phys. Rev. Lett., 1987, 58(12): 1212-1215.

[36] . W. Schoenlein, W. Z. Lin, J. G. Fujimoto et al.. Femtosecond studies of nonequilibrium electronic processes in metals[J]. Phys. Rev. Lett., 1987, 58(16): 1680-1683.

[37] . D. Brorson, A. Kazeroonian, J. S. Moodera et al.. Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors[J]. Phys. Rev. Lett., 1990, 64(18): 2172-2175.

[38] . Liu, D. Du, G. Mourou. Laser ablation and micromachining with ultrashort laser pulse[J]. IEEE J. Quant. Electron., 1997, 33(10): 1706-1716.

[39] . D. Shirk, P. A. Molian. A review of ultrashort pulsed laser ablation of materials[J]. J. Laser Appl., 1998, 10(1): 18-28.

[40] . Wang, X. Xu. Molecular dynamics simulation of heat transfer and phase change during laser material interactions[J]. J. Heat Transfer, 2002, 124(2): 265-274.

[41] . D. Decker, W. B. Mori, J. M. Dawson et al.. Nonlinear collisional absorption in laser-driven plasmas[J]. Phys. Plasmas, 1994, 1(12): 4043-4049.

[42] . Bésuelle, R. R. E. Salomaa, D. Teychenné. Coulomb logarithm in femtosecond-laser-matter interaction[J]. Phys. Rev. E, 1999, 60(2): 2260-2263.

[43] . L. Dong, J. Zhang, H. Teng. Absorption of femtosecond laser pulses in interaction with solid targets[J]. Phys. Rev. E, 2001, 64(2): 026411.

[44] . Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al.. Transient states of matter during short pulse laser ablation[J]. Phys. Rev. Lett., 1998, 81(1): 224-227.

[45] . Wolff-Rottke, J. Ihlemann, H. Schmidt et al.. Influence of the laser-spot diameter on photo-ablation rates[J]. Appl. Phys. A, 1995, 60(1): 13-17.

[46] . P. Pronko, P. VanRompay, A. Horvath et al.. Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses[J]. Phys. Rev. B, 1998, 58(5): 2387-2390.

[47] . Kaiser, B. Rethfeld, M. Vicanek et al.. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses[J]. Phys. Rev. B, 2000, 61(17): 11437-11450.

[48] . Ladieu, P. Martin, S. Guizard. Measuring thermal effects in femtosecond laser-induced breakdown of dielectrics[J]. Appl. Phys. Lett., 2002, 81(6): 957-959.

[49] Y. M. Oh, S. H. Lee, S. Park et al.. A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker-Planck equation[J]. Int. J. Heat Mass Tran., 2006, 49(7~8): 1493~1500

[50] . Machan, M. Valley, G. Holleman et al.. Diode-pumped Nd:YAG laser for precision laser machining[J]. J. Laser Appl., 1996, 8(10): 225-232.

[51] . C. Stuart, M. D. Feit, A. M. Rubenchik et al.. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses[J]. Phys. Rev. Lett., 1995, 74(12): 2248-2251.

[52] . G. Gamaly, A. V. Rode, B. Luther-Davies et al.. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics[J]. Phys. Plas., 2002, 9(3): 949-957.

[53] . Rode, B. Luther-Davies, E. G. Gamaly. Ultrafast ablation with high-pulse-rate lasers part Ⅰ: theoretical considerations[J]. J. Appl. Phys., 1999, 85(8): 4213-4221.

[54] . Q. Jia, Z. Z. Xu, R. X. Li et al.. Mechanisms in fs-laser ablation in fused silica[J]. J. Appl. Phys., 2004, 95(9): 5166-5171.

[55] . G. Gamaly, S. Juodkazis, K. Nishimura et al.. Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation[J]. Phys. Rev. B, 2006, 73(21): 214101.

[56] . Q. Jia, H. Y. Sun, X. X. Li et al.. The ultrafast excitation processes in femtosecond laser-induced damage in dielectric omnidirectional reflectors[J]. J. Appl. Phys., 2006, 100(2): 023103.

[57] . Louzon, Z. Henis, S. Pecker et al.. Reduction of damage threshold in dielectric materials induced by negatively chirped laser pulses[J]. Appl. Phys. Lett., 2005, 87(24): 241903.

[58] . Jasapara, A. V. V. Nampoothiri, W. Rudolph et al.. Femtosecond laser pulse induced breakdown in dielectric thin films[J]. Phys. Rev. B, 2001, 63(4): 045117.

[59] . Rethfeld. Free-electron generation in laser-irradiated dielectrics[J]. Phys. Rev. B, 2006, 73(3): 035101.

[60] . Rethfeld. Unified model for the free-electron avalanche in laser-irradiated dielectrics[J]. Phys. Rev. Lett., 2004, 92(18): 187401.

[61] C. L. Arnold, W. Ertmer, H. Lubatschowski. Simulation of ultrashort pulse induced plasma generation and interaction within the bulk of transparent Kerr media[C]. SPIE, 2006, 6108: 610808

[62] . S. Mao, S. F. Quere, S. Guizard et al.. Dynamics of femtosecond laser interactions with dielectrics[J]. Appl. Phys. A, 2004, 79(7): 1695-1709.

[63] . Couairon, L. Sudrie, M. Franco et al.. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses[J]. Phys. Rev. B, 2005, 71(12): 125435.

[64] . Y. Vislobokov. Quasi-soliton and multifocal propagation of high-intensity laser pulses in silica glass[J]. Quantum Electron., 2006, 36(8): 773-777.

[65] . W. Winkler, I. M. Burakov, R. Stoian et al.. Transient response of dielectric materials exposed to ultrafast laser radiation[J]. Appl. Phys. A, 2006, 84(4): 413-422.

[66] . C. Stuart, M. D. Feit, S. Herman et al.. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Phys. Rev. B, 1996, 53(4): 1749-1761.

[67] . M. Azzouz. Investigation of photoionization processes in ultrashort laser induced damage in optical materials[J]. J. Phys. B, 2004, 37: 3259-3264.

[68] . Jiang, H. L. Tsai. Plasma modeling for ultrafast laser ablation of dielectrics[J]. J. Appl. Phys., 2006, 100(2): 023116.

[69] . Kruger, W. Kautek. Ultrashort pulse laser interaction with dielectrics and polymers[J]. Adv. Polym. Sci., 2004, 168: 247-289.

[70] 何飞,程亚. 飞秒激光微加工: 激光精密加工领域的新前沿[J]. 中国激光, 2007, 34(5): 595~622

    F. He, Y. Cheng. Femtosecond laser micromachining: frontier in laser precision micromachining[J]. Chinese J. Lasers, 2007, 34(5): 595~622

[71] . R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2(4): 219-225.

[72] . Tien, S. Backus, H. Kapteyn et al.. Short-pulse laser damage in transparent materials as a function of pulse duration[J]. Phys. Rev. Lett., 1999, 82(19): 3883-3886.

[73] . Wong, S. Vongehr, V. V. Kresin. Work functions, ionization potentials, and in between: scaling relations based on the image-charge model[J]. Phys. Rev. B, 2003, 67(3): 035406.

[74] . Guy, M. F. Joubert, B. Jacquier et al.. Excited-state absorption in BaY2F8Nd3+[J]. Phys. Rev. B, 1993, 47(17): 11001-11006.

[75] . A. Manenkov. Ultimate laser intensities in transparent solids[J]. Laser Phys., 1996, 6(3): 501-505.

[76] . D. Perry, B. C. Stuart, P. S. Banks et al.. Ultrashort-pulse laser machining of dielectric materials[J]. J. Appl. Phys., 1999, 85(9): 6803-6810.

[77] M. D. Perry, B. C. Stuart, P. S. Banks et al.. Ultrashort-pulse laser micromachining, LIA Handbook of Laser Materials Processing[M]. J. F. Ready, D.F. Farson ed., Laser Institute of America, Magnolia Publishing, Inc., 2001, 499~508

[78] . Mao, S. S. Mao, R. E. Russo. Imaging femtosecond laser-induced electronic excitation in glass[J]. Appl. Phys. Lett., 2003, 82(5): 697-699.

[79] . V. Ammosov, N. B. Delone, V. P. Krainov. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic[J]. Soviet Phys. JETP, 1986, 64: 1191-1194.

[80] . V. Keldysh. Ionization in the field of a strong electromagnetic wave[J]. Sov. Phys. JETP, 1965, 20: 1307-1314.

[81] . Arnold, E. Cartier. Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids[J]. Phys. Rev. B, 1992, 46(23): 15102-15115.

[82] L. Jiang, H. L. Tsai. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse[J]. Int. J. Heat Mass Transfer, 2005, 48(3~4): 487~499

[83] . Li, S. Menon, J. P. Nibarger et al.. Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics[J]. Phys. Rev. Lett., 1999, 82(12): 2394-2397.

[84] . Bloembergen. Laser-induced electric breakdown in solids[J]. IEEE J. Quantum Electron., 1974, 10(3): 375-386.

[85] . H. Holway, D. W. Fradin. Electron avalanche breakdown by laser radiation in insulating crystals[J]. J. Appl. Phys., 1975, 46(1): 279-291.

[86] . Sparks, D. L. Mills, R. Warren et al.. Theory of electron-avalanche breakdown in solids[J]. Phys. Rev. B, 1981, 24(6): 3519-3536.

[87] . A. Manenkov, A. M. Prokhorov. Laser-induced damage in solids[J]. Sov. Phys. Usp., 1986, 148(1): 179-211.

[88] . Du, X. Liu, G. Korn et al.. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Appl. Phys. Lett., 1994, 64(23): 3071-3073.

[89] . Du, X. Liu, G. Mourou. Reduction of multi-photon ionization in dielectrics due to collisions[J]. Appl. Phys. B, 1996, 63(6): 617-621.

[90] . Yeom, H. Jiang, J. Singh. High power laser semiconductor interactions: a Monte Carlo study for silicon[J]. J. Appl. Phys., 1997, 81(4): 1807-1812.

[91] . Z. Xu, T. Q. Jia, H. Y. Sun et al.. Mechanisms of femtosecond laser-induced breakdown and damage in MgO[J]. Opt. Commun., 2006, 259(1): 274-280.

[92] . Y. Sun, T. Q. Jia, C. B. Li et al.. Mechanisms of femtosecond laser-induced damage in magnesium fluoride[J]. Solid State Commun., 2007, 141(3): 127-131.

[93] . M. Petrov, J. Davis. Interaction of intense ultra-short laser pulses with dielectrics[J]. J. Phys. B: At. Mol. Opt. Phys., 2008, 41(2): 025601.

[94] . D. Perry, A. Szoke, O. L. Landen et al.. Nonresonant multiphoton ionization of noble gases: Theory and experiment[J]. Phys. Rev. Lett., 1988, 60(13): 1270-1273.

[95] . Petite, S. Guizard, P. Martin et al.. Comment on ‘Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics’[J]. Phys. Rev. Lett., 1999, 83(24): 5182-5182.

[96] . K. Thornber. Applications of scaling to problems in high-field electronic transport[J]. J. Appl. Phys., 1981, 52(1): 279-290.

[97] Y. P. Raizer. Laser-Induced Discharge Phenomena[M]. New York: Consultant Bureau, 1977

[98] . Luther-Davies, E. G. Gamaly, Y. Wang et al.. Matter in ultrastrong laser fields[J]. Sov. J. Quantum Electron., 1992, 22(4): 289-325.

[99] . Quéré, S. Guizard, P. Martin. Time-resolved study of laser-induced breakdown in dielectrics[J]. Europhys. Lett., 2001, 56(1): 138-144.

[100] . V. Exter, A. Lagendijk. Ultrashort surface-plasmon and phonon dynamics[J]. Phys. Rev. Lett., 1988, 60(1): 49-52.

[101] . S. Wellershoff, J. Hohlfeld, J. Gudde et al.. The role of electron-phonon coupling in femtosecond laser damage of metals[J]. Appl. Phys. A Suppl., 1999, 69(7): 99-107.

[102] . Gómez-Abal, W. Hübner. Simple model for laser-induced electron dynamics[J]. Phys. Rev. B, 2002, 65(19): 195114.

[103] L. D. Landau, E. M. Lifshitz. Electrodynamics of Continuous Media[M]. Oxford: Pergamon, 1960

[104] E. M. Lifshitz, L. P. Pitaevskii. Physical Kinetics[M]. Oxford: Pergamon, 1981

[105] . Rozmus, V. T. Tikhonchuk. Skin effect and interaction of short laser pulses with dense plasmas[J]. Phys. Rev. A, 1990, 42(12): 7401-7412.

[106] . S. Fann, R. Storz, H. W. K. Tom et al.. Electron thermalization in gold[J]. Phys. Rev. B, 1992, 46(20): 13592-13595.

[107] . B. Sun, T. Tanaka, S. Kawata. Three-dimensional focal spots related to two-photon excitation[J]. Appl. Phys. Lett., 2002, 80(20): 3673-3675.

姜澜, 李丽珊, 王素梅, . 飞秒激光与宽禁带物质相互作用过程中光子-电子-声子之间的微能量传导: I:光子吸收过程[J]. 中国激光, 2009, 36(4): 779. Lan Jiang, Lishan Li, Sumei Wang, Hai-Lung Tsai. Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part Ⅰ: photon absorption[J]. Chinese Journal of Lasers, 2009, 36(4): 779.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!