光学学报, 2013, 33 (1): 0134001, 网络出版: 2013-01-17   

部分相干同步辐射照射下光栅分数塔尔博特效应

Fractional Talbot Effect of Phase Gratings Illuminated by Partially Coherent Synchrotron Radiation
作者单位
中国科学院上海应用物理研究所, 上海 201204
摘要
基于高斯谢尔光束的相干模式分解理论和波动光学,建立了部分相干同步辐射硬X射线光束通过光学器件的传播模型。模拟了微聚焦X射线光束照射下光栅的分数塔尔博特效应,得到了聚焦光束的光强分布和相干特性变化,并分析了散焦光束入射下的光栅自成像。然后通过模拟准直光束入射下的光栅塔尔博特效应,得到了不同传播距离处自成像条纹的变化情况,分析了影响光栅自成像条纹形状的因素。通过光栅衍射条纹测量同步辐射相干度,发现对矩形相位光栅来说,应该对衍射图样进行傅里叶分解,求出各级傅里叶系数随传播距离的变化曲线,从而得到入射光束相干特性。
Abstract
Propagation model of hard X-ray beams from partially coherent synchrotron source through different optical elements is proposed based on the coherent mode decomposition of Gaussian-Schell model and wave-front propagation. The fractional Talbot effect of phase gratings illuminated by focused partially coherent synchrotron radiation is simulated. Both the focusing beam′s intensity distribution and the coherence properties are obtained. And the self-imaging of gratings illuminated by defocused beam is analyzed. The influences of different factors on the shape of Talbot images at different fractional Talbot distances are analyzed through the comparison of the self-imaging fringes in the diffraction pattern of gratings illuminated by collimated beam. The diffraction images of rectangular phase gratings are submitted to a Fourier transform procedure, yielding the Fourier coefficients of different orders as a function of propagation distance, and the information on the lateral coherence of the beam is obtained.
参考文献

[1] H. F. Talbot. Facts relating to optical science[J]. Phil. Mag., 1836, 9(5): 401~407

[2] A. Momose, S. Kawamoto, I. Koyama et al.. Demonstration of X-ray Talbot interferometry[J]. Jpn. J. Appl. Phys., 2003, 42(7): 866~868

[3] A. Momose, W. Yashiro, Y. Takeda et al.. Phase tomography by X-ray Talbot interferometry for biological imaging[J]. Jpn. J. Appl. Phys., 2006, 45(6): 5254~5262

[4] M. Engelhardt, C. Kottler, O. Bunk et al.. The fractional Talbot effect in differential X-ray phase-contrast imaging for extended and polychtromatic X-ray sources[J]. J.Microscopy, 2008, 232(1): 145~157

[5] 黄建衡, 林丹樱, 刘振伟 等. 中能X射线光栅相衬显微成像分析及模拟[J]. 光学学报, 2011, 31(10): 1034001

    Huang Jianheng, Lin Danying, Liu Zhenwei et al.. Analysis and simulation of mid-energy X-ray grating phase contrast microscopy imaging[J]. Acta Optica Sinica, 2011, 31(10): 1034001

[6] Liu Xiaosong, Li Enrong, Zhu Peiping et al.. Comparative analysis of phase extraction methods based on phase-stepping and shifting curve in grating interferometry[J]. Chin. Phys. B, 2010, 19(4): 040701

[7] T. Weitkamp, B. Nhammer, A. Diaz et al.. X-ray wavefront analysis and optics characterization with a grating interferometer[J]. Appl. Phys. Lett., 2005, 86(5): 054101

[8] F. Pfeiffer, O. Bunk, C. Schulze-Briese et al.. Shearing interferometer for quantifying the coherence of hard X-ray beams[J]. Phys. Rev. Lett.. 2005, 94(16): 164801

[9] T. Salditt, S. Kalbfleisch, M. Osterhoff et al.. Partially coherent nano-focused X-ray radiation characterized by Talbot interferometry[J]. Opt. Express, 2011, 19(10): 9656~9675

[10] J. P. Guigay, S. Zabler, P. Cloetens et al.. The partial Talbot effect and its use in measuring the coherence of synchrotron X-rays[J]. J. Synchrotron. Rad., 2004, 11: 476~482

[11] P. Cloetens, J. P. Guigay, C. D. Martino et al.. Fractional Talbot imaging of phase gratings with hard X-rays [J]. Opt. Lett., 1997, 22(14): 1059~1061

[12] I. A. Vartanyants, I. K. Robinson. Origins of decoherence in coherent X-ray diffraction experiments[J]. Opt. Commun., 2003, 222(1-6): 29~50

[13] C. M. Kewish, L. Assoufid, A. T. Acrander et al.. Wave-optical simulation of hard-X-ray nanofocusing by precisely figured elliptical mirrors[J]. Appl. Opt., 2007, 46(11): 2010~2021

[14] C. M. Kewish, A. T. Macrander, L. Assoufid et al.. Comparison of two methods for simulation of hard X-ray nanofocusing by elliptical mirrors[J]. Nucl. Instrum. Meth. A, 2007, 582(1): 138~141

[15] K. Fezzaa, F. Comin, S. Marchesini et al.. X-ray interferometry at ESRF using two coherent beams from Fresnel mirrors[J]. J. X-Ray Sci. Technol., 1997, 7(1): 12~23

[16] D. Pelliccia, A. Y. Nikulin, H. O. Moser et al.. Experimental characterization of the coherence properties of hard X-ray sources[J]. Opt. Express, 2011, 19(9): 8073~8078

[17] I. A. Vartanyants, A. P. Mancuso, A. Singer et al.. Coherence measurements and coherent diffractive imaging at FLASH[J]. J. Phys. B: At. Mol. Opt. Phys., 2010, 43(19): 194016

[18] 王华, 闫帅, 闫芬 等. 上海同步辐射装置波荡器光源空间相干性的研究[J]. 物理学报, 2012, 61(14): 144102

    Wang Hua, Yan Shuai, Yan Fen et al.. Research on spatial coherence of undulator source in Shanghai Synchrotron Radiation Facility[J]. Acta Physica Sinica, 2012, 61(14): 144102

[19] 朱佩平, 唐鄂生, 崔明启 等. 同步辐射X光束空间相干性的物理分析[J]. 光学学报, 1998, 18(2): 176~181

    Zhu Peiping, Tang Esheng, Cui Mingqi et al.. Analyses of spatial coherence of X-ray beam from the synchrotron radiation[J]. Acta Optica Sinica, 1998, 18(2): 176~181

[20] 唐鄂生,朱佩平, 崔明启 等. 同步辐射的相干模式[J]. 光学学报, 1998, 18(12): 1640~1645

    Tang Esheng, Zhu Peiping, Cui Mingqi et al.. Coherence mode of synchrotron radiation [J]. Acta Optica Sinica, 1998, 18(12): 1640~1645

[21] I. A. Vartanyants, A. Singer. Coherence properties of hard X-ray synchrotron sources and X-ray free-electron lasers[J]. New J. Phys., 2010, 12(3): 035004

[22] R. Cosson, S. Marchesini. Gauss-Schell sources as models for synchrotron radiation[J]. J. Synchrotron Radiat., 1997, 4(5): 263~266

[23] S. Flewett, H. M. Quiney, C. Q. Tran et al.. Extracting coherent modes from partially coherent wave fields[J]. Opt. Lett., 2009, 34(14): 2198~2200

[24] M. Idir, M. Cywiak, A. Morales et al.. X-ray optics simulation using Gaussian superposition technique[J]. Opt. Express, 2011,19(20): 19050~19060

[25] 玻恩, 沃尔夫. 光学原理[M]. 杨葭孙 译. 北京:科学出版社, 1978. 459~506

    M. Born, E. Wolf. Principles of Optics[M]. Yang Jiasun Transl.. Beijing: Science Press, 1978. 459~506

[26] L. Mandel, E. Wolf. Optical Coherence and Quantum Optics[M]. Cambridge: Cambridge University Press, 1995. 259~263

[27] F. Gori. Mode propagation of the field generated by Collett-Wolf Schell-model sources[J]. Opt. Commun., 1983, 46(3-4): 149~154

[28] 陈博, 朱佩平, 刘宜晋 等. X射线光栅相位成像的理论与方法[J]. 物理学报, 2008, 57(3): 1576~1581

    Chen Bo, Zhu Peping, Liu Yijin et al.. Theory and method of X-ray grating phase contrast imaging[J]. Acta Physica Sinica, 2008, 57(3): 1576~1581

[29] I. K. Robinson, C. A. Kenney-Benson, I. A. Vartaniants. Sources of decoherence in beamline optics[J]. Physica B, 2003, 336(1-2): 56~62

[30] K. A. Nugent, C. Q. Tran, A. Roberts. Coherence transport through imperfect X-ray optical systems[J]. Opt. Express, 2003, 11(9): 2323~2328

[31] 周同军, 滕树云. 光栅尺寸对光栅泰伯效应的影响[J]. 山东师范大学学报, 2007, 22(3): 50~52

    Zhou Tongjun, Teng Shuyun. The influence of size of the grating on the Talbot effect[J]. J. Shandong Normal University, 2007, 22(3): 50~52

[32] 方靖岳, 秦石乔, 王省书 等. 光栅大小对琅奇光栅泰伯效应的影响分析[J]. 红外与激光工程, 39(5): 848~852

    Fang Jingyue, Qin Shiqiao, Wang Xingshu et al.. Fresnel diffraction of the limited-size Ronchi grating[J]. Infrared and Laser Engineering, 39(5): 848~852

[33] 滕树云, 刘立人, 刘德安 等. 部分相干光照明下光栅的塔尔博特效应[J]. 光学学报, 2004, 24(5): 692~695

    Teng Shuyun, Liu Liren, Liu Dean et al.. Fresnel diffraction of the grating illuminated by partially coherent light[J]. Acta Optica Sinica, 2004, 24(5): 692~695

滑文强, 边风刚, 宋丽, 王劼. 部分相干同步辐射照射下光栅分数塔尔博特效应[J]. 光学学报, 2013, 33(1): 0134001. Hua Wenqiang, Bian Fenggang, Song Li, Wang Jie. Fractional Talbot Effect of Phase Gratings Illuminated by Partially Coherent Synchrotron Radiation[J]. Acta Optica Sinica, 2013, 33(1): 0134001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!