光学学报, 2016, 36 (10): 1026012, 网络出版: 2016-10-12   

空间滤波器失调对2 kW射频板条CO2激光器输出光束的影响 下载: 660次

Shaped Beam of a 2 kW Radio Frequency Slab CO2 Laser with Misaligned Spatial Filter
作者单位
1 湖北第二师范学院光电信息科学与工程系, 湖北 武汉 430205
2 华中科技大学光学与电子信息学院激光加工国家工程研究中心, 湖北 武汉 430074
摘要
2 kW射频板条CO2激光器光束整形系统中空间滤波器具有消除旁瓣、提升光束质量的作用,研究其失调对输出光束的影响具有现实意义。通过理论和实验研究了空间滤波器失调对光强分布的影响,理论分析与实验结果基本一致。数值模拟了失调对输出功率的影响。结果表明,空间滤波器非稳方向横向位移失调对输出功率的影响不是线性的,输出功率损耗随着横向位移的增加急剧增大;对整形光束光强分布的影响很大,失调量大于0.2 mm时就会使整形光束非稳方向出现明显的旁瓣。空间滤波器轴向位移失调对功率影响较小,但对光斑形状有比较明显的影响,失调量达到10 mm时,整形光束两个方向的直径差可达3 mm。空间滤波器旋转失调角度在10°以下时,对整形光束非稳方向光束的影响可以忽略,主要影响波导方向光束,旋转失调会使模式变差。旋转失调对功率也有较大的影响,失调角度为10°时,功率损耗增加到25%。
Abstract
The spatial filter in the beam shaping system of a 2 kW radio frequency slab CO2 laser is used to eliminate side lobes and improve quality of output beams. It is important to study the effect of misaligned spatial filters on the characteristics of the shaped beam. The effect of the misaligned spatial filter on intensity distribution of the shaped beam was studied theoretically and experimentally. The theoretical simulation results are in agreement with the experimental results. Meanwhile, the effect of the misaligned spatial filter on output power of the shaped beam was studied by theoretical simulation. The results show that the effect of lateral displacement in the unstable direction of the spatial filter on the output power and the intensity distribution of the shaped beam is significant. The output power decreases and the side lobes appear as the lateral displacement increases. The shaped beam is not a circle while the spatial filter is axially-misaligned. The diameter difference is up to 3 mm when the axial displacement is 10 mm. The angle misalignment of the spatial filter mainly has impact on the shaped beam in the waveguide direction. The side lobes appear and the beam quality decreases as the angle misalignment increases. The loss of output power is up to 25% when the angle misalignment is 10°.
参考文献

[1] Maleki A, Tehrani M K, Saghafifar H, et al. A compact diode-pumped pulsed NdYAG slab laser based on a master oscillator power amplifier configuration[J]. Laser Physics, 2016, 26(2): 025003.

[2] Chen J C, Li J, Xu J L, et al. 4350 W quasi-continuous-wave operation of a diode face-pumped ceramic NdYAG slab laser[J]. Optics & Laser Technology, 2014, 63: 50-53.

[3] Zendzian W, Jabczynski J K, Kaskow M, et al. 250 mJ, self-adaptive, diode-side-pumped NdYAG slab laser[J]. Optics Letters, 2012, 37(13): 2598-2600.

[4] Du K M, Wu N L, Xu J D, et al. Partially end-pumped NdYAG slab laser with a hybrid resonator[J]. Optics Letters, 1998, 23(5): 370-372.

[5] Shen B J, Kang H X, Chen P, et al. Performance of continuous-wave laser-diode side-pumped ErYSGG slab lasers at 2.79 μm[J]. Applied Physics B, 2015, 121(4): 511-515.

[6] Shen Y J, Duan X M, Yuan J H, et al. Investigation of high-power diode-end-pumped TmYLF laser in slab geometry[J]. Applied Optics, 2015, 54(8): 1958-1962.

[7] Shen Y J, Yao B Q, Qian C P , et al. 108-W diode-end-pumped slab TmYLF laser with high beam quality[J]. Applied Physics B, 2015, 118(4): 555-559.

[8] Bai Y, Qi M, Wang S, et al. CW mode-locked 1.908 μm Tm:LiYF4 slab laser based on an output-coupling graphene saturable absorber mirror[J]. Applied Physics Express, 2013, 6(10): 102701.

[9] Liu X, Huang H T, Shen D Y, et al. High-power LD end-pumped TmYAG ceramic slab laser[J]. Applied Physics B, 2015, 118(4): 533-538.

[10] Yang Q, Zhu X L, Ma J, et al. High energy 523 nm Nd:YLF pulsed slab laser with novel pump beam waveguide design[J]. Optics Communications, 2015, 354: 414-418.

[11] Xu L, Zhang H L, He J L, et al. Double-end-pumped Nd:YVO4 slab laser at 1064 nm[J]. Applied Optics, 2012, 51(12): 2012-2014.

[12] Du K M, Li D J, Zhang H L, et al. Electro-optically Q-switched Nd:YVO4 slab laser with a high repetition rate and a short pulse width[J]. Optics Letters, 2003, 28(2): 87-89.

[13] Abe M, Seki H, Kowa M, et al. High average power, diffraction-limited picosecond output from a sapphire face-cooled Nd:YVO4 slab amplifier[J]. Journal of the Optical Society of America B, 2015, 32(4): 714-718.

[14] von Grafenstein L, Bock M, Ueberschaer D, et al. Picosecond 34 mJ pulses at kHz repetition rates from a HoYLF amplifier at 2 μm wavelength[J]. Optics Express, 2015, 23(26): 33142-33149.

[15] Strauss H J, Preussler D, Esser M J D, et al. 330 mJ single-frequency HoYLF slab amplifier[J]. Optics Letters, 2013, 38(7): 1022-1024.

[16] Kim G H, Yang J, Chizhov S A , et al. High average-power ultrafast CPA YbKYW laser system with dual-slab amplifier[J]. Optics Express, 2012, 20(4): 3434-3442.

[17] Nowack R R, Opower H, Schaefer U, et al. High-power CO2 waveguide laser of the 1-kW category[C]. SPIE, 1990, 1276: 18-28.

[18] Habich U, Heursch A, Plum H D, et al. Beam generation and beam shaping for a 1.5-kW diffusion-cooled annular CO2 laser[C]. SPIE, 1998, 3267: 66-73.

[19] 焦文涛, 辛建国. 射频激励板条波导CO2激光器远场空间压窄单峰输出模式的研究[J]. 物理学报, 1999, 48(10): 1875-1883.

    Jiao Wentao, Xin Jianguo. Experimental study on a RF-excited slab waveguide CO2 laser with the far field intensity distribution of a single suppressed peak[J]. Acta Physica Sinica, 1999, 48(10): 1875-1883.

[20] 李志明, 辛建国. 射频激励金属板条波导CO2激光器的功率输出特性[J]. 红外与激光工程, 2008, 37(2): 230-232.

    Li Zhiming, Xin Jianguo. Power output characteristic of RF excited all metal slab waveguide CO2 laser [J]. Infrared and Laser Engineering, 2008, 37(2): 230-232.

[21] 高允贵, 朱永祥, 丁义国, 等. 射频板条CO2激光器输出光束的光学变换[J]. 光学学报, 2008, 28(s): 98-101.

    Gao Yungui, Zhu Yongxiang, Ding Yiguo, et al. Optical transform of output laser beam of RF excited slab CO2 laser [J]. Acta Optica Sinica, 2008, 28(s): 98-101.

[22] Xiao L S, Qin Y X, Tang X H, et al. Beam shaping characteristics of an unstable-waveguide hybrid resonator[J]. Applied Optics. 2014, 53(10): 2213-2219.

[23] 肖龙胜, 唐霞辉, 秦应雄, 等. 2 kW射频板条CO2激光器输出光束整形特性研究[J]. 中国激光, 2014, 41(4): 0402008.

    Xiao Longsheng, Tang Xiahui, Qin Yingxiong, et al. Shaping characteristics of output beam of 2 kW radio frequency slab CO2 laser[J]. Chinese J Lasers, 2014, 41(4): 0402008.

[24] Weber H. Collins′ integral for misaligned optical elements[J]. Journal of Modern Optics, 2006, 53(18): 2793-2801.

肖龙胜, 秦应雄, 王振, 唐霞辉. 空间滤波器失调对2 kW射频板条CO2激光器输出光束的影响[J]. 光学学报, 2016, 36(10): 1026012. Xiao Longsheng, Qin Yingxiong, Wang Zhen, Tang Xiahui. Shaped Beam of a 2 kW Radio Frequency Slab CO2 Laser with Misaligned Spatial Filter[J]. Acta Optica Sinica, 2016, 36(10): 1026012.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!