光学学报, 2017, 37 (6): 0630003, 网络出版: 2017-06-08   

基于分组三维离散余弦变换字典的植物高光谱数据去噪方法

Denoising Method for Plant Hyperspectral Data Based on Grouped 3D Discrete Cosine Transform Dictionary
作者单位
杭州电子科技大学生命信息与仪器工程学院, 浙江 杭州 310018
摘要
针对植物高光谱图像各波段噪声强度不同, 以及空间域和谱域均存在噪声污染的问题, 提出了一种基于分组三维(3D)离散余弦变换(DCT)字典的稀疏表示去噪方法。首先分析了植物光谱特征, 根据谱间相关性对波段进行分组; 然后采用边缘块剔除的局部均值标准差法对高光谱图像进行噪声标准差估计, 为去噪算法提供参考阈值; 最后构建三维DCT字典的稀疏表示去噪方法, 对植物高光谱图像进行去噪。实验结果表明, 与原始数据和二维DCT字典去噪方法相比, 谱域噪声评估中平均信噪比分别提高18.2 dB和9.2 dB。因此, 该方法不仅具有较好的空间域去噪能力, 也有较好的谱域去噪能力。
Abstract
In order to solve the problems that noise intensity of each band for plant hyperspectral image is different and noise exists in both spatial and spectral domains, a sparse representation denoising method is proposed based on the grouped three-dimensional (3D) discrete cosine transform (DCT) dictionary. Firstly, the spectral characteristics of the plants are analyzed and the bands are grouped according to the spectral correlation. Secondly, local mean standard deviation of eliminating edges is used to estimate the noise standard deviation of hyperspectral images, which provides the reference threshold for denoising algorithm. Finally, a sparse representation denoising method based on 3D DCT dictionary is constructed for denoising plant hyperspectral images. Experimental results show that, comparing with the original data and the denoising method of two-dimensional (2D) DCT dictionary, the average signal-to-noise ratios of the noise evaluation by the proposed method are improved by 18.2 dB and 9.2 dB in the spectral domain. Therefore, the proposed method can denoise not only in the spatial domain but also in the spectral domain.
参考文献

[1] 张 兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5): 1062-1090.

    Zhang Bing. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote, 2016, 20(5): 1062-1090.

[2] 张 翔, 张建奇, 靳 薇, 等. 一种新的高光谱图像中太阳耀斑去除方法[J]. 光学学报, 2008, 28(4): 664-668.

    Zhang Xiang, Zhang Jianqi, Jin Wei, et al. Method for removing sun glint from hyperspectral image[J]. Acta Optica Sinica, 2008, 28(4): 664-668.

[3] Vaiphasa C. Consideration of smoothing techniques for hyperspectral remote sensing[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2006, 60(2): 91-99.

[4] 杨 哲, 王玉田, 潘 钊. 基于EMD-LWT的低浓度石油类污染物荧光光谱去噪法[J]. 光学学报, 2016, 36(5): 0530001.

    Yang Zhe, Wang Yutian, Pan Zhao. Fluorescence spectrum denoising method for low concentration petroleum pollutants based on EMD-LWT[J]. Acta Optica Sinica, 2016, 36(5): 0530001.

[5] 陈 丛, 卢启鹏, 彭忠琦. 基于NLMS自适应滤波的近红外光谱去噪处理方法研究[J]. 光学学报, 2012, 32(5): 0530001.

    Chen Cong, Lu Qipeng, Peng Zhongqi. Preprocessing methods of near-infrared spectrum based on NLMS adaptive filtering[J]. Acta Optica Sinica, 2012, 32(5): 0530001.

[6] Atkinson I, Kamalabadi F, Jones D L. Wavelet-based hyperspectral image estimation[C]. IEEE International Geoscience and Remote Sensing Symposium, 2003: 743-745.

[7] Chen G, Bui T D, Krzyzak A. Denoising of three-dimensional data cube using bivariate wavelet shrinking[J]. International Journal of Pattern Recognition & Artificial Intelligence, 2011, 25(3): 403-413.

[8] 霍雷刚, 冯象初. 基于主成分分析和字典学习的高光谱遥感图像去噪方法[J]. 电子与信息学报, 2014, 36(11): 2723-2729.

    Huo Leigang, Feng Xiangchu. Denoising of hyperspectral remote sensing image based on principal component analysis and dictionary learning[J]. Journal of Electronics & Information Technology, 2014, 36(11): 2723-2729.

[9] 汪浩然, 夏克文, 任苗苗. 结合PCA及字典学习的高光谱图像自适应去噪方法[J]. 计算机应用, 2016, 36(12): 3411-3417.

    Wang Haoran, Xia Kewen, Ren Miaomiao. Adaptive denoising method of hyperspetral remote sensing image based on PCA and dictionary learning[J]. Journal of Computer Applications, 2016, 36(12): 3411-3417.

[10] Othman H, Qian S E. Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44(2): 397-408.

[11] 徐 冬, 孙 蕾, 罗建书. 结合NAPCA和复小波变换的高光谱遥感图像去噪[J]. 红外与激光工程, 2015, 44(1): 327-334.

    Xu Dong, Sun Lei, Luo Jianshu. Denoising of hyperspectral remote sensing imagery using NAPCA and complex wavelet transform[J]. Infrared and Laser Engineering, 2015, 44(1): 327-334.

[12] Elad M. Sparse and redundant representations: from theory to applications in signal and image processing[M]. Springer Publishing Company, 2010.

[13] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]. Circuits, Systems and Computers, 1993, 1: 40-44.

[14] Chen Y, Nasrabadi N M, Tran T D. Simultaneous joint sparsity model for target detection in hyperspectral imagery[J]. IEEE Geoscience & Remote Sensing Letters, 2011, 8(4): 676-680.

[15] Zhang Y, Du B, Zhang L. A sparse representation-based binary hypothesis model for target detection in hyperspectral images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(3): 1346-1354.

[16] Choi M G, Jung J H, Jeon J W. No-reference image quality assessment using blur and noise[J]. International Journal of Electrical & Electronics Engineering, 2009: 163-167.

[17] Liu X, Bourennane S, Fossati C. Nonwhite noise reduction in hyperspectral images[J]. IEEE Geoscience & Remote Sensing Letters, 2012, 9(3): 368-372.

[18] Gao B C. An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers[J]. Remote Sensing of Environment, 1993, 43(1): 23-33.

[19] 高连如, 张 兵, 张 霞, 等. 基于局部标准差的遥感图像噪声评估方法研究[J]. 遥感学报, 2007, 11(2): 201-208.

    Gao Lianru, Zhang Bing, Zhang Xia, et al. Study on the method for estimating the noise in remote sensing images based on local standard deviations[J]. Journal of Remote Sensing, 2007, 11(2): 201-208.

[20] 胡广书. 数字信号处理: 理论、算法与实现[M]. 北京: 清华大学出版社, 2012.

    Hu Guangshu. Digital signal processing: theory, algorithm and implementation[M]. Beijing: Tsinghua University Press, 2012.

[21] Feig E, Linzer E. The multiplicative complexity of discrete cosine transforms[J]. Advances in Applied Mathematics, 1992, 13(4): 494-503.

[22] Gao L, Du Q, Zhang B, et al. A comparative study on linear regression-based noise estimation for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 6(2): 488-498.

[23] 蒋青松, 王建宇. 实用型模块化成像光谱仪多光谱图像的信噪比估算及压缩方法研究[J]. 光学学报, 2003, 23(11): 1335-1340.

    Jiang Qingsong, Wang Jianyu. Study on signal-to-noise ratio estimation and compression method of operational modular imaging spectrometer multi-spectral images[J]. Acta Optica Sinica, 2003, 23(11): 1335-1340.

徐平, 肖冲, 张竞成, 薛凌云. 基于分组三维离散余弦变换字典的植物高光谱数据去噪方法[J]. 光学学报, 2017, 37(6): 0630003. Xu Ping, Xiao Chong, Zhang Jingcheng, Xue Lingyun. Denoising Method for Plant Hyperspectral Data Based on Grouped 3D Discrete Cosine Transform Dictionary[J]. Acta Optica Sinica, 2017, 37(6): 0630003.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!