光学学报, 2012, 32 (12): 1207002, 网络出版: 2012-09-14   

基于结构光投影的二维S变换轮廓术

2D S-Transform Profilometry Based on the Structured Light Projection
作者单位
四川大学电子信息学院光电系, 四川 成都 610064
摘要
S变换是一种集合了窗口傅里叶变换和小波变换优点的时频分析技术,目前一维S变换已成功应用于结构光投影的条纹相位解调中。由于二维S变换可以对图像在两个方向上进行时频分析,具有更优于一维S变换的分析和处理能力。为了完善S变换的条纹相位解调理论,将二维S变换方法引入到基于结构光投影的三维光学测量中,研究了二维S变换在条纹相位解调中的原理及应用,给出了详尽的理论分析,并同一维S变换结果进行了比较。模拟和实验都表明,在条纹图解相中,二维S变换比一维S变换提取的相位精度更高,即使在存在较严重噪声污染的情况下也表现出良好的可靠性,体现出二维S变换提取相位的优势。
Abstract
The S transform is one of the time-frequency analysis techniques which combines the advantages of both the short-time Fourier transform and wavelet transform. The one-dimensional S transform has been successfully used in fringe phase demodulation based on structured light projection. The two-dimensional (2D) S transform is able to carry out the time-frequency analysis for images in two directions, which is better than one-dimensional (1D) S transform. The 2D S transform based on the structured light projection method is introduced to the three-dimensional (3D) optical measurement for completing S transform fringe phase demodulation theory. This work studies the theory and application of the 2D S transform in fringe phase demodulation and gives a detailed theoretical analysis. Furthermore, a comparison between the 2D S transform and the 1D S transform is carried out in fringe phase demodulation. The comparison result shows that the 2D S transform will achieve a higher accuracy than 1D S transform in extracting the phase distribution of the fringe patterns, even when the fringe patterns are seriously polluted by noises. Both the computer simulations and experiments verify that the 2D S transform outperforms the 1D S transform in the fringe analysis.
参考文献

[1] 苏显渝, 李继陶. 信息光学[M]. 北京: 科学出版社, 1999. 306~338

    Su Xianyu, Li Jitao. Information Optical[M]. Beijing: Science Press, 1999. 306~338

[2] F. Chen, G. M. Brown, M. Song. Overview of three dimensional shape measurement using optical methods[J]. Opt. Engng., 2000, 39(1): 10~22

[3] 金国藩, 李景镇. 激光测量学[M]. 北京: 科学出版社, 1998. 337

    Jin Guofan, Li Jingzhen. Laser Metrology[M]. Beijing: Science Press, 1998. 337

[4] V. Srinivasan, H. C. Liu, M. Halioua. Automated phase-measuring profilometry of 3-D diffuse objects[J]. Appl. Opt., 1984, 23(18): 3105~3108

[5] 何宇航, 曹益平, 钟立俊 等. 采用频域滤波提高数字相位测量轮廓术的测量精度[J]. 中国激光, 2010, 37(1): 220~224

    He Yuhang, Cao Yiping, Zhong Lijun et al.. Improvement on measuring accuracy of digital phase measuring profilometry by frequency filtering[J]. Chinese J. Lasers, 2010, 37(1): 220~224

[6] H. Takasaki. Moiré topography[J]. Appl. Opt., 1970, 9(6): 1467~1472

[7] M. Takeda, K. Mutoh. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Appl. Opt., 1983, 22(24): 3977~3982

[8] Xianyu Su, Likun Su, Wansong Li et al.. New 3D profilometry based on modulation measurement[C]. SPIE, 1998, 3558: 1~7

[9] Kemao Qian, Haixia Wang, Wenjing Gao. Windowed Fourier transform for fringe pattern analysis: theoretical analyses[J]. Appl. Opt., 2008, 47(29): 5408~5419

[10] Qian Kemao. Windowed Fourier transform for fringe pattern analysis[J]. Appl. Opt., 2004, 43(13): 2695~2702

[11] 黄柏圣, 许家栋. 基于二维短时傅里叶变换的干涉相位图滤波方法[J]. 计算机工程与应用, 2010, 46(7): 139~141

    Huang Baisheng, Xu Jiadong. InSAR interferogram filtering based on two-dimensional windowed Fourier transform[J]. Computer Engineering and Application, 2010, 46(7): 139~141

[12] 翁嘉文, 钟金钢. 小波变换在载频条纹相位分析法中的应用研究[J]. 光学学报, 2005, 25(4): 454~459

    Weng Jiawen, Zhong Jingang. Apply wavelet transform to phase analysis of spatial carrier-fringe pattern[J]. Acta Optica Sinica, 2005, 25(4): 454~459

[13] 孙娟, 陈文静, 苏显渝 等. 小波变换轮廓术的测量范围研究[J]. 光学学报, 2007, 27(4): 647~653

    Sun Juan, Chen Wenjing, Su Xianyu et al.. Study the measurement range of wavelet transform profilometry[J]. Acta Optica Sinica, 2007, 27(4): 647~653

[14] 李思坤, 苏显渝, 陈文静. 一种新的小波变换空间载频条纹相位重建方法[J]. 中国激光, 2010, 37(12): 3060~3065

    Li Sikun, Su Xianyu, Chen Wenjing. A new wavelet transform method for optical carrier-fringe pattern phase reconstruction[J]. Chinese J. Lasers, 2010, 37(12): 3060~3065

[15] R. G. Stockwell, L. Mansinha, R. P. Lowe. Localization of the complex spectrum: the S-transform[J]. IEEE Trans. Signal Processing, 1996, 44(4): 998~1001

[16] 蒋模华, 陈文静, 郑志平. 基于S变换的解相技术研究[J]. 光学学报, 2011, 31(4): 0412001

    Jiang Mohua, Chen Wenjing, Zheng Zhiping. Research of phase demodulation technique based on S-transform[J]. Acta Optica Sinica, 2011, 31(4): 0412001

[17] 钟敏, 陈文静, 蒋模华. S变换轮廓术中消除条纹非线性影响的方法[J]. 光学学报, 2011, 31(11): 1112003

    Zhong Min, Chen Wenjing, Jiang Mohua. S-transform profilometry eliminates nonlinear error in deformed fringe pattern[J]. Acta Optica Sinica, 2011, 31(11): 1112003

[18] L. Mansinha, R. Gstoekwell, R. P. Lowe. Pattern analysis with two dimensional spectral localization: applications of two-dimensional S-transforms[J]. Physica A, 1997, 239(1-3): 286~295

[19] 王焘, 陈文静. 利用小波变换实现基于结构光投影的S变换轮廓术[J]. 激光与光电子学进展, 2012, 49(6): 061202

    Wang Tao, Chen Wenjing. Using wavelet transform to actualize S-transform profilometry based on structured light projection[J]. Laser & Optoelectronics Progress, 2012, 49(6): 061202

[20] G. C. Gaunaurd, H. C. Strifors. Signal analysis by means of time-frequency (Wigner-type) distribution-applications to sonarand radar echoes[J]. Proc. IEEE, 1996, 84(9): 1231~1284

[21] 林金风, 苏显渝. 用于沙体三维形态检测的二维傅里叶变换轮廓术[J]. 光电工程, 1995, 22(6): 52~59

    Lin Jinfeng, Su Xianyu. Two-dimensional Fourier transform profilometry for the measurement of three-dimensional sandbody shapes[J]. Opto-Electronic Engineering, 1995, 22(6): 52~59

王焘, 陈文静, 钟敏, 苏显渝. 基于结构光投影的二维S变换轮廓术[J]. 光学学报, 2012, 32(12): 1207002. Wang Tao, Chen Wenjing, hong Min, Su Xianyu. 2D S-Transform Profilometry Based on the Structured Light Projection[J]. Acta Optica Sinica, 2012, 32(12): 1207002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!