半导体光电, 2018, 39 (2): 206, 网络出版: 2018-05-29  

带隙渐变纳米线的光电导淬灭效应

Magical Quenching Effect of Gradient Band Gap CdSSe Nanowire
作者单位
1 航天科工防御技术研究试验中心, 北京 100854
2 北京大学 软件与微电子学院, 北京 100871
摘要
采用气相沉积温度梯度分布合成纳米线法, 在750~950℃耐高温石英管中, 在催化剂金的催化作用下, 生长出310μm带隙渐变的硫硒化镉半导体纳米线, 并利用倏逝波耦合的方法导波激发, 分别对不同掺杂比例的部分纳米线进行研究。实验发现, 在注入功率低于10-8W时, 随着光强增大不同带隙宽度的纳米线的淬灭度都在增大; 然而在注入功率继续增大时, S元素比例占到90%的纳米线的淬灭度峰值最早到来, 以Se元素为主的纳米线的淬灭度峰值在10-6W注入光下仍未出现, 原因是增加S元素会使更多的复合中心转变为陷阱能级中心, 更多的电子可以跃迁至导带。封装上电极的带隙渐变纳米线可应用于制作高分辨率的红外光探测器, 也为有效检测半导体材料的缺陷能级提供了便利。
Abstract
The method of vapor and temperature gradient distribution was used to grow nanowire. In 750~950℃ quartz tube, by means of the gold catalysis, CdSSe semiconductor nanowires of 310μm gradient band gap were grown. Using the evanescent wave coupling method to guide wave excitation, the quenching effect of different component parts of the nanowire was studied. It is found that when the power injection is below 10-8W, the quenching degree will increase with increasing light intensity of different band gap nanowires. However, the quenching degree peak of the nanowires with 90% S elements proportion arrivals the earliest. And even under 10-6W injection light, the quenching degree peak of Se element still does not appear. The reason is that with the increasing of S elements, more recombination centers turn into the trap energy level centers, so more electrons can jump to the conduction band. The nanowire with gradient band gap fabricated with electrodes can be used to make high resolution infrared detectors, and provide convenience for detecting the defect level of semiconductor materials effectively.
参考文献

[1] Kempa T, Day R, Kim S, et al. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells[J]. Energy & Environmental Science, 2013, 6(7): 19-33.

[2] Pokhrel S, Simion C E, Teodorescu V S, et al. Synthesis, mechanism and gas-sensing application of surfactant tailored tungsten oxide nanostructures[J]. Adv. Funct. Mater., 2009, 19(11): 1767-1774.

[3] Teoh W Y, Amal R, Madler L. Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication[J]. Nanoscale, 2010, 2(13): 24-47.

[4] Pokhrel S, Birkenstock J, Schowalter M, et al. Growth of ultrafine single crystalline WO3 nanoparticles using flame spray pyrolysis[J]. Crystal Growth & Design, 2010, 10(2): 632-639.

[5] Kemmler J A, Pokhrel S, Birkenstock J, et al. Quenched, nanocrystalline ISns on high temperature phase for gas sensing applications[J]. Sensors and Actuators B, 2012, 161(7): 40-47.

[6] Nel A E, Madler L, Velegol D, et al. Understanding biophysi cochemical interactions at the nano-bio interface[J]. Nature Materials, 2009, 8(7): 543-557.

[7] Law M, Goldbeiger J, Yang P D. Semiconductor nanowires and nanotubes[J]. Annual Rev. of Mater. Research, 2004, 34(3): 83-122.

[8] De Franceschi S, Van Dam J A, Bakkers E, et al. Single-electron tunneling in InP nanowires[J]. Appl. Phys. Lett., 2003, 83(2): 344-346.

[9] Zhong Z, Fang Y, Lu W, et al. Coherent single charge transport in molecular-scale silicon nanowires[J]. Nano Lett., 2005, 5(6): 1143-1146.

[10] Bjork M T, Thelander C, Hansen A E, et al. Few-electron quantum dots in nanowires[J]. Nano Lett., 2004, 4(9): 1621-1625.

[11] 范志东, 周子淳, 刘 绰, 等. Eu掺杂Si纳米线的光致发光特性[J]. 物理学报, 2015, (14): 351-355. Fan Zhidong, Zhou Zichun, Liu Chuo, et al. Photoluminescence properties of Eu doped Si nanowires[J]. Acta Physica Sinica, 2015, (14): 351-355.

[12] Pan Anlian, Liu Ruibin, Sun Minghua, et al. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710nm on a single substrate[J]. Acs Nano., 2010, 4(2): 671-680.

[13] Gu Fuxing, Yang Zongyin, Yu Huakang, et al. Spatial bandgap engineering along single alloy nanowires[J]. Am. Chem. Soc, 2011, 133(133): 2037-2039.

[14] Bube R H. Photoelectronic Properties of Semiconductors[M]. Cambridge: Cambridge University Press, 1992, 1(1): 78-96.

[15] Hou Q F, Wang X L, Xiao H L, et al. Variation of optical quenching of photoconductivity with resistivity in unintentional doped GaN[J]. Chin. Phys. Lett., 2010, 27(27): 57-104.

[16] Cai S, Parish G, Umana-Membreno G A, et al. Optical quenching of photoconductivity in undoped n-GaN[J]. Appl. Phys., 2004, 95(95): 1081-1088.

[17] Huang Z C, Mott D B, Shu P K, et al. Optical quenching of photoconductivity in GaN photoconductors[J]. Appl. Phys., 1997, 82(82): 2707-2709.

[18] Lin T Y, Yang H C, Chen Y F. Optical quenching of the photoconductivity in n-type GaN[J]. Appl. Phys., 2000, 87(87): 3044-3048.

[19] Ursaki W, Tiginyanu I M, Ricci P C, et al. Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation[J]. Appl. Phys., 2003, 94(38): 75-82.

[20] Bube R H. Infrared quenching and a unified description of photoconductivity phenomena in cadmium sulfide and selenide[J]. Phys. Rev., 1955, 99(11): 1105-1116.

[21] Grabner L. Optical quenching of photoconductivity near the band edge in CdS[J]. Phys. Rev. Lett., 1965, 14(5): 551-554.

[22] Gu F, Zhang L, Yu H, et al. Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation[J]. Nanotechnol., 2011, 22(425): 425201-425205.

[23] Reimers P. Preparation of graded-band-gap single crystals of Ⅱ-Ⅵ compounds[J]. Physica Status Solidi, 1969, 35(2): 707-716.

[24] Reimers P, Ruppel W. Preparation of CDS-CDSE graded single crystals[J]. Physica Status Solidi, 1968, 29(1): 31-33.

刘敦伟, 袁光立, 安辉耀, 石雪梅, 于涛. 带隙渐变纳米线的光电导淬灭效应[J]. 半导体光电, 2018, 39(2): 206. LIU Dunwei, YUAN Guangli, AN Huiyao, SHI Xuemei, YU Tao. Magical Quenching Effect of Gradient Band Gap CdSSe Nanowire[J]. Semiconductor Optoelectronics, 2018, 39(2): 206.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!