激光与光电子学进展, 2013, 50 (8): 080003, 网络出版: 2013-08-08   

飞秒激光直写制备蛋白质功能化器件 下载: 581次

Protein Functional Devices Manufactured by Femtosecond Laser Direct Writing
作者单位
1 吉林大学电子科学与工程学院 集成光电子国家重点联合实验室, 吉林 长春 130012
2 吉林大学物理学院, 吉林 长春 130023
摘要
飞秒激光双光子(多光子)微纳加工技术,因其优异的可设计三维加工能力、高空间分辨率和低附加损伤,不仅得到了广泛而深入的研究,而且越来越多地具体应用在诸多前沿领域。介绍了飞秒激光直写技术在多种材料和多个领域的最新具体应用和进展,并着重介绍了生物材料的飞秒激光直写的相关工作。尤其是蛋白质类材料,以其独特的物理、化学、生物特性,结合飞秒激光直写的先进加工手段,使得多样化、功能化的生物相关微纳器件和系统得以实现。
Abstract
Femtosecond laser two-photon (multi-photon) micro/nano-processing technology gets the extensive and in-depth research, and is more specifically applied in many frontier fields because of its excellent designable three-dimensional (3D) processing capacity, high spatial resolution, and low additional damage. In this review, we introduce the latest concrete applications and progress of femtosecond laser direct writing (fsLDW) technology in diverse fields with various materials, emphatically, the related work on biological materials′ fsLDW processing. Especially, by combining with the advanced fsLDW technology, protein-based materials have been studied and explored in various functional bio-related micro/nano-devices and systems based on their unique physical, chemical, and biological characteristics.
参考文献

[1] S Kawata, Sun Hongbo, T Tanaka, et al.. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

[2] Zang Yonglai, Chen Qidai, Xia Hong, et al.. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 2010, 5(5): 435-448.

[3] S Turunen, E Kapyla, K Terzaki, et al.. Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity[J]. Biofabrication, 2011, 3(4): 045002.

[4] Bryan Kaehr, Jason B Shear. Mask-directed multiphoton lithography[J]. J Am Chem Soc, 2007, 129(7): 1904-1905.

[5] Bryan Kaehr, Richard Allen, David J Javier, et al.. Guiding neuronal development with in situmicrofabrication[J]. PNAS, 2004, 101(46): 16104-16108.

[6] Stephanie K Seidlits, Christine E Schmidt, Jason B Shear, et al.. High-resolution patterning of hydrogels in three dimensions using direct-write photofabrication for cell guidance[J]. Adv Funct Mater, 2009, 19: 3543-3551.

[7] Ryan T Hill, Jennifer L Lyon, Richard Allen, et al.. Microfabrication of three-dimensional bioelectronic architectures[J]. J Am Chem Soc, 2005, 127(30): 10707-10711.

[8] Sun Yunlu, Dong Wenfei, Yang Ruizhu, et al.. Dynamically tunable protein microlenses[J]. Angew Chem Int Ed, 2012, 51(7): 1558-1562.

[9] Sun Yunlu, Liu Dongxu, Dong Wenfei, et al.. Tunable protein harmonic diffractive micro-optical elements[J]. Opt Lett, 2012, 37(14): 2973-2975.

[10] Shaun D Gittard, Alexander Nguyen, Kotaro Obata, et al.. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator[J]. Biomed Opt Express, 2011, 2(11): 3167-3178.

[11] J D Pitts, P J Campagnola, G A Epling, et al.. Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release[J]. Macromol, 2000, 33(5): 1514-1523.

[12] J D Pitts, A R Howell, R Taboada, et al.. New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: bovine serum albumin and type 1 collagen[J]. Photochem Photobiol, 2002, 76(2): 135-144.

[13] A Ovsianikov, A Deiwick, S Van Vlierberghe, et al.. Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues[J]. Materials, 2011, 4(1): 288-299.

[14] A Ovsianikov, A Deiwick, S Van Vlierberghe, et al.. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering[J]. Biomacromolecules, 2011, 12(4): 851-858.

[15] Eric C Spivey, Eric T Ritschdorff, Jodi L Connell, et al.. Multiphoton lithography of unconstrained three-dimensional protein microstructures[J]. Adv Funct Mater, 2013, 23(3): 333-339.

[16] Chi-Hsiang Lien, Wen-Shuo Kuo, Keng-Chi Cho, et al.. Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry[J]. Opt Express, 2011, 19(7): 6260-6268.

[17] He Yan, Huang Bailing, Lu Dongxu, et al.. “Overpass” at the junction of a crossed microchannel: an enabler for 3D microfluidic chips[J]. Lab Chip, 2012,12(20): 3866-3869.

[18] Kenji Takada, Wu Dong, Chen Qidai, et al.. Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires[J]. Optics Letters, 2009, 34(5): 566-568.

[19] Ku Jinfeng, Chen Qidai, Zhang Ran, et al.. Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing[J]. Optics Letters, 2011, 36(15): 2871-2873.

[20] Koshiro Kaneko, Kazuo Yamamoto, Satoshi Kawata, et al.. Metal-nanoshelled three-dimensional photonic lattices[J]. Optics Letters, 2008, 33(17): 1999-2001.

[21] Lin Xiaofeng, Chen Qidai, Niu Ligang, et al.. Mask-free production of integratable monolithic micro logarithmic axicon lenses[J]. J Lightwave Technol, 2010, 28(8): 1256-1260.

[22] Chen Qidai, Lin Xiaofeng, Niu Ligang, et al.. Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization[J]. Opt Lett, 2008, 33(21): 2559-2561.

[23] Sana Nakanishi, Satoru Shoji, Satoshi Kawata, et al.. Giant elasticity of photopolymer nanowires[J]. Appl Phys Lett, 2007, 91(6): 063122.

[24] Kenji Takada, Koshiro Kaneko, Yu-Dong Li, et al.. Temperature effects on pinpoint photopolymerization and polymerized micronanostructures[J]. Appl Phys Lett, 2008, 92(4): 041902.

[25] Wu Dong, Wu Sizhu,Niu Ligang, et al.. High numerical aperture microlens arrays of close packing[J]. Appl Phys Lett, 2010, 97(3): 031109.

[26] Wu Dong, Chen Qidai, Niu Ligang, et al.. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab Chip, 2009, 9(10): 2391-2394.

[27] Wu Dong, Chen Qidai, Niu Ligang, et al.. 100% Fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision[J]. IEEE Photon Technol Lett, 2009, 21(20): 1535-1537.

[28] Wu Dong, Niu Ligang, Chen Qidai, et al.. High efficiency multilevel phase-type fractal zone plates[J]. Opt Lett, 2008, 33(24): 2913-2915.

[29] Wang Juan, He Yan, Xia Hong, et al.. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization[J]. Lab Chip, 2010, 10(15): 1993-1996.

[30] Tian Ye, Zhang Yonglai, Ku Jinfeng, et al.. High performance magnetically controllable microturbines[J]. Lab Chip, 2010, 10(21): 2902-2905.

[31] Wang Juan, Xia Hong, Xu Binbin, et al.. Remote manipulation of micronanomachines containing magnetic nanoparticles[J]. Opt Lett, 2009, 34(5): 581-583.

[32] Xia Hong, Zhang Wenyi, Wang Fangfang, et al.. Three-dimensional micronanofabrication via two-photon-excited photoisomerization[J]. Appl Phys Lett, 2009, 95(8): 083118.

[33] Xia Hong, Wang Juan, Tian Ye, et al.. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization[J]. Adv Mater, 2010, 22(29): 3204-3207.

[34] Tian Ye, Zhang Yonglai, Xia Hong, et al.. Solvent response of polymers for micromachine manipulation[J]. Phys Chem Chem Phys, 2011, 13(11): 4835-4838.

[35] Lin Xiaofeng, Hu Guoqing, Chen Qidai, et al.. A light-driven turbine-like micro-rotor and study on its light-to-mechanical power conversion efficiency[J]. Appl Phys Lett, 2012, 101(11): 113901.

[36] Guo Li, Xia Hong, Fan Huitao, et al.. Femtosecond laser direct patterning of sensing materials toward flexible integration of micronanosensors[J]. Opt Lett, 2010, 35(10): 1695-1697.

[37] Xu Binbin, Ma Zhuochen, Wang Huan, et al.. A SERS-active microfluidic device with tunable surface plasmon resonances[J]. Electrophoresis, 2011, 32(23): 3378-3384.

[38] Xu Binbin, Xia Hong, Niu Ligang, et al.. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating[J]. Small, 2010, 6(16): 1762-1766.

[39] Xu Binbin, Zhang Ran, Liu Xueqing, et al.. On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring[J]. Chem Commun, 2012, 48(11): 1680-1682.

[40] Zhang Yonglai, Guo Li, Wei Shu, et al.. Direct imprinting of microcircuits on grapheme oxides film by femtosecond laser reduction[J]. Nano Today, 2010, 5(1): 15-20.

[41] Xu Binbin, Zhang Yonglai, Zhang Ran, et al.. Programmable assembly of CdTe quantum dots into microstructures by femtosecond laser direct writing[J]. J Mater Chem C, 2013,doi: 10.1039/c3tc30666f.

[42] Xu Binbin, Zhang Ran, Wang Huan, et al.. Laser patterning of conductive gold micronanostructures from nanodots[J]. Nanoscale, 2012, 4(22): 6955-6958.

[43] Guo Li, Shao Ruiqiang, Zhang Yonglai, et al.. Bandgap tailoring and synchronous microdevices patterning of graphene oxides[J]. J Phys Chem C, 2012, 116(5): 3594-3599.

[44] Ryan Toler Hill. Active Three-Dimensional Protein Microstructures[D]. Austin: The University of Texas at Austin, 2006. 9-12.

[45] Bryan Kaehr, Nusret Ertas, Rex Nielson, et al.. Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser[J]. Anal Chem, 2006, 78(9): 3198-3202.

[46] Richard Allen, Rex Nielson, Dana D Wise, et al.. Catalytic three-dimensional protein architectures[J]. Anal Chem, 2005, 77(16): 5089-5095.

[47] Constantine Y Khripin, C Jeffrey Brinker, Bryan Kaehr. Mechanically tunable multiphoton fabricated protein hydrogels investigated using atomic force microscopy[J]. Soft Matter, 2010, 6(12): 2842-2848.

[48] Bryan Kaehr, Jason B Shear. Multiphoton fabrication of chemically responsive protein hydrogels for microactuation[J]. PNAS, 2008, 105(26): 8850-8854.

[49] Eric T Ritschdorff, Rex Nielson, Jason B Shear. Multi-focal multiphoton lithography[J]. Lab Chip, 2012, 12(5): 867-871.

孙思明, 孙允陆, 刘东旭, 陈岐岱, 董文飞, 孙洪波. 飞秒激光直写制备蛋白质功能化器件[J]. 激光与光电子学进展, 2013, 50(8): 080003. Sun Siming, Sun Yunlu, Liu Dongxu, Chen Qidai, Dong Wenfei, Sun Hongbo. Protein Functional Devices Manufactured by Femtosecond Laser Direct Writing[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080003.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!