激光与光电子学进展, 2018, 55 (9): 091403, 网络出版: 2018-09-08   

激光选区熔化扫描策略对钛合金成形精度的影响 下载: 979次

Effect of Scanning Strategy on Forming Precision of Titanium Alloy by Selective Laser Melting
作者单位
1 江南大学机械工程学院, 江苏 无锡 214122
2 国家增材制造产品质量监督检验中心(江苏), 江苏 无锡 214101
摘要
通过不同的扫描策略激光选区熔化(SLM)成形了钛合金样件, 分析了扫描策略对成形精度的影响。结果表明, 成形件侧表面的粗糙度受扫描策略的影响较大, 单向和Z型扫描策略成形件平行于扫描方向的侧表面粗糙度小于垂直于扫描方向的; 螺旋线扫描策略成形件的整体翘曲偏差范围较小, 外形结构较精准; 三种扫描策略成形件的外形长宽尺寸比设计模型减小了1~2 mm, 而其他特征结构尺寸与设计模型相近。螺旋线扫描策略成形件的整体成形精度优于单向和Z型扫描策略。
Abstract
The titanium alloy samples are formed by selective laser melting (SLM) based on different scanning strategies, and the effect of scanning strategy on forming precision is analyzed. The results show that the roughness on lateral surface of forming part is strongly affected by the scanning strategy. The roughness on lateral surface of forming part by one-way scanning or Z-scanning strategies parallel to the scanning direction is better than that on the lateral surface perpendicular to the scanning direction. The degree of bending curvature of forming part by the spiral scanning strategy is relatively small and its shape structure is relatively accurate. Compared with the design model, the length and width of forming part by these three scanning strategies are reduced by 1-2 mm, while the other sizes are close. The whole forming precision of forming part by spiral scanning strategy is better than those by one-way scanning and Z-scanning strategies.
参考文献

[1] 杨永强, 陈杰, 宋长辉, 等. 金属零件激光选区熔化技术的现状及进展[J]. 激光与光电子学进展, 2018, 55(1): 011401.

    Yang Y Q, Chen J, Song C H, et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011401.

[2] 李俊峰, 魏正英, 卢秉恒. 钛及钛合金激光选区熔化技术的研究进展[J]. 激光与光电子学进展, 2018, 55(1): 011403.

    Li J F, Wei Z Y, Lu B H. Research progress on technology of selective laser melting of titanium and titanium alloys[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011403.

[3] 杨佳, 郭洪钢, 谭建波. 选择性激光熔化技术研究现状及发展趋势[J]. 河北工业科技, 2017, 34(4): 300-305.

    Yang J, Guo H G, Tan J B. Status and development trend of selective laser melting forming technology[J]. Hebei Journal of Industrial Science and Technology, 2017, 34(4): 300-305.

[4] 李俐群, 王建东, 吴潮潮, 等. Ti6Al4V激光熔化沉积熔池温度场与微观组织特性[J]. 中国激光, 2017, 44(3): 0302009.

    Li L Q, Wang J D, Wu C C, et al. Temperature field of molten pool and microstructure property in laser melting depositions of Ti6AlV[J]. Chinese Journal of Lasers, 2017, 44(3): 0302009.

[5] 王祥, 周建忠, 黄舒, 等. 激光喷丸对TC4钛合金抗氢脆性能的影响[J]. 光学学报, 2017, 37(9): 0914006.

    Wang X, Zhou J Z, Huang S, et al. Effect of laser peening on hydrogen embrittlement resistance of TC4 titanium alloys[J]. Acta Optica Sinica, 2017, 37(9): 0914006.

[6] Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9): 3303-3312.

[7] Wang D, Yang Y Q, Su X B, et al. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58: 1189-1199.

[8] Geiger F, Kunze K, Etter T. Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies[J]. Materials Science and Engineering: A, 2016, 661: 240-246.

[9] 邓诗诗, 杨永强, 李阳, 等. 分区扫描路径规划及其对SLM成型件残余应力分布的影响[J]. 中国激光, 2016, 43(12): 1202003.

    Deng S S, Yang Y Q, Li Y, et al. Planning of area-partition scanning path and its effect on residual stress of SLM molding parts[J]. Chinese Journal of Lasers, 2016, 43(12): 1202003.

[10] 刘楠, 贾亮, 杨广宇, 等. 扫描策略及束流参数对TC4合金电子束快速成形过程的影响[J]. 热加工工艺, 2015, 44(12): 47-49.

    Liu N, Jia L, Yang G Y, et al. Effect of scan strategy and beam parameters on EBM process for TC4 alloy [J]. Hot Working Technology, 2015, 44(12): 47-49.

[11] 陈德宁, 刘婷婷, 廖文和, 等. 扫描策略对金属粉末选区激光熔化温度场的影响[J]. 中国激光, 2016, 43(4): 0403003.

    Chen D N, Liu T T, Liao W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 2016, 43(4): 0403003.

[12] 程慧. 选区激光熔化成形往复扫描工艺研究[D]. 杭州: 浙江工业大学, 2016.

    Cheng H. Research on reciprocating scanning technology of selective laser melting[D]. Hangzhou: Zhejiang University of Technology, 2016.

[13] 胡仁喜, 康士廷, 朱玉莲, 等. ANSYS15.0热力学有限元分析从入门到精通[M]. 北京: 机械工业出版社, 2015.

    Hu R X, Kang S T, Zhu Y L, et al. ANSYS15.0 thermodynamics finite element analysis from the beginning to master[M]. Beijing: China Machine Press, 2015.

[14] 傅蔡安, 陈佩胡. 选择性激光烧结的翘曲变形与扫描方式的研究[J]. 铸造, 2008, 57(12): 1237-1240.

    Fu C A, Chen P H. Research of curl distortion and raster scanning way of selective laser sintering[J]. China Foundry, 2008, 57(12): 1237-1240.

葛亚楠, 武美萍, 冒浴沂, 韩基泰. 激光选区熔化扫描策略对钛合金成形精度的影响[J]. 激光与光电子学进展, 2018, 55(9): 091403. Ge Yanan, Wu Meiping, Mao Yuyi, Han Jitai. Effect of Scanning Strategy on Forming Precision of Titanium Alloy by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091403.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!