红外与激光工程, 2018, 47 (6): 0604002, 网络出版: 2018-09-08   

激光熔丝增材制造温度场的红外热像监测

Monitoring of laser metal-wire additive manufacturing temperature field using infrared thermography
作者单位
1 重庆大学 材料科学与工程学院, 重庆 400045
2 中国科学院重庆绿色智能技术研究院, 重庆 400714
3 智能增材制造技术与系统重庆市重点实验室, 重庆 400714
摘要
为实现对增材制造成形件的精确控形控性, 必须要对其热过程有一定科学认识。以真空环境下激光熔丝增材制造单道成形为例, 利用红外热像技术对其热过程进行监测。比较分析送丝速度对温度场、热循环、冷却速率的影响规律, 利用红外热分析对其成形熔敷道宽度及缺陷开展研究。结果表明: 借助红外热像可实现对熔敷道温度场变化的监测, 沿熔敷道长度成形方向, 监测点对应最高温度和冷却速率分别呈现升高和降低趋势。随着送丝速度的增加, 熔敷道长度1/4、2/4、3/4处监测点对应的冷却速率随之减小。此外, 基于红外热分析可实现对熔敷道宽度预测以及对缺陷位置的定位。
Abstract
For achieving precisely "controlling shape and performance" of components by additive manufacturing, scientific understanding is needed for thermal process. Taking laser metal-wire additive manufacturing (AM) under vacuum and using single-pass as an example, the thermal process was monitored based on infrared (IR) thermography. The effect of wire feeding speed on temperature field, thermal cycle, cooling rate was analyzed. The width of cladding layer and defect were studied based on IR thermography. The results show that the temperature monitoring was achieved. Along the length of cladding layer, the maximum temperature for monitoring point increased and then the cooling rate decreased. With wire feeding speed increasing, it led to the decrease of cooling rate for monitoring point at 1/4, 2/4, 3/4 of cladding layer. In addition, the width of cladding layer could be predicted and the location of defect could be located with the help of IR thermography analysis.先进焊接与连接国家重点实验室面上项目(AWJ-M16-03)
参考文献

[1] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698.

    Wang Huaming. Materials′ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698. (in Chinese)

[2] 吴伟辉, 肖冬明, 毛星. 金属零件自动超轻结构化设计及激光增材制造[J]. 红外与激光工程, 2016, 45(11): 1106009.

    Wu Weihui, Xiao Dongming, Mao Xing. Automatic design and laser additive manufacturing of supe-light structure of metal part [J]. Infrared and Laser Engineering, 2016, 45(11): 1106009. (in Chinese)

[3] Ding D H, Pan Z X, Cuiuri D, et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests [J]. International Journal of Advanced Manufacturing Technology, 2015, 81(1): 465-481.

[4] 熊俊. 多层单道GMA增材制造成形特性及熔敷尺寸控制[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    Xiong Jun. Forming characteristics in multi-layer single-bead GMA additive manufacturing and control for deposition dimension[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)

[5] Cong Baoqiang, Ding Jialuo, Stewart Williams. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy [J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(9-12): 1593-1606.

[6] Wang F, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44A: 968-977.

[7] Jhavar S, Jain N K, Paul C P. Development of micro-plasma transferred arc (μ-pta) wire deposition process for additive layer manufacturing applications[J]. Journal of Materials Processing Technology, 2014, 214: 1102-1110.

[8] Matz J E, Eagar T W. Carbide formation in alloy 718 during electron-beam solid freeform fabrication [J]. Metallurgical and Materials Transactions A, 2002, 33: 2559-2567.

[9] Heralic A. Monitoring and control of robotized laser [D]. Gothenburg: Chalmers University of Technology, 2012.

[10] Chivel Y. Optical in-process temperature monitoring of selective laser melting [J]. Physics Procedia, 2013, 41: 904-910.

[11] Clijsters S, Craeghs T, Buls S, et al. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system [J]. International Journal of Advanced Manufacturing Technology, 2014, 75: 1089-1101.

[12] Ding X P, Li H M, Zhu J Q, et al. Application of infrared thermography for laser metal-wire additive manufacturing in vacuum [J]. Infrared Physics & Technology, 2017, 81: 166-169.

[13] 何显中, 袁强, 黄明其, 等. 红外成像技术在金属模型转捩测量中的应用[J]. 红外与激光工程, 2016, 45(6): 0604004.

    He Xianzhong, Yuan Qiang, Huang Mingqi, et al. Application of infrared imaging technology in bounder layer transition measurement for metal model [J]. Infrared and Laser Engineering, 2016, 45(6): 0604004. (in Chinese)

朱进前, 凌泽民, 杜发瑞, 丁雪萍, 李慧敏. 激光熔丝增材制造温度场的红外热像监测[J]. 红外与激光工程, 2018, 47(6): 0604002. Zhu Jinqian, Ling Zemin, Du Farui, Ding Xueping, Li Huimin. Monitoring of laser metal-wire additive manufacturing temperature field using infrared thermography[J]. Infrared and Laser Engineering, 2018, 47(6): 0604002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!