光学 精密工程, 2017, 25 (9): 2324, 网络出版: 2017-10-30   

无线日盲紫外光测距定位方法

Ranging and positioning method using wireless solar blind ultraviolet
作者单位
1 西安理工大学 自动化与信息工程学院, 陕西 西安 710048
2 陕西省复杂系统控制与智能信息处理重点实验室(西安理工大学), 陕西 西安 710048
摘要
在无人机的自主飞行及着陆引导中, 测距与定位是其中的关键问题。本文提出了一种基于无线紫外光的测距定位方法, 对无线紫外光直视通信模型和非直视通信模型进行了分析, 推导出直视和非直视情况下的距离计算公式。根据四节点定位算法, 可以解出未知节点的位置坐标。使用波长为255 nm的“日盲”紫外LED及光电倍增管作为收发器件, 测距信号采用10 kHz的方波信号, 在不同天气情况下进行测距实验。实验结果表明: 在直视情况下, 被测距离真值为0~100 m的测距误差均小于5 m; 在非直视情况下, 由于多径散射的影响, 有效测距距离降为0~70 m。当发送仰角和接收仰角均小于10°时, 测距误差较小, 均小于5 m, 当发送仰角和接收仰角均大于10°时, 随着发送仰角和接收仰角的增大, 有效测距距离明显降低。总的来说, 该算法有着较高的精度, 在GPS无法正常使用时能够为无人机提供导航数据, 基本能够满足自主降落和飞行引导的要求。
Abstract
In order to solve the problem of positioning in UAV flight and landing guidance scene, this paper presented a ranging and positioning method based on wireless ultraviolet lights. The method analyzed communication models of wireless ultraviolet Line of Sight(LOS) and Non-Line-of-Sight(NLOS), thus deriving the distance algorithm for LOS and NLOS communications. The location coordinates of unknown nodes were solved by the four node localization algorithm. Using a 255 nm UV LED as the light source, a PMT as the receiving device and a 10 kHz square wave signal as the ranging signal, ranging experiments under different weather conditions were performed. The experimental results indicate that the ranging error is less than 5 m in LOS communication with the ranging distance of 0~100 m. In NLOS communication, the effective ranging distance is reduced to 0~70 m due to the influence of multipath scattering. When the transmitting elevation and receiving elevation is less than 10°, the ranging error is less than 5 m, otherwise the effective distance decreased significantly with the increase of transmitting and receiving elevations. In general, the algorithm can provide navigation data for unmanned aerial vehicles with a high accuracy when the GPS cannot work normally, thus can meet the requirements of autonomous landing and flight guidance.
参考文献

[1] SHENG S Z, MIAN A A, ZHAO C, et al.. Autonomous takeoff and landing control for a prototype unmanned helicopter [J]. Control Engineering Practice, 2010, 18(9): 1053-1059.

[2] RAMASAMY S, GARDI A, LIU A, et al.. A laser obstacle detection and avoidance system for manned and unmanned aircraft applications [C]. 2015 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2015: 526-533.

[3] 张磊, 杨甬英, 张铁林, 等. 基于日盲区紫外成像的无人机着陆引导技术研究[J]. 中国激光, 2016, 43(7): 168-177.

    ZHANG L, YANG Y Y, ZHANG T L, et al.. Research of UAV landing guidance technology based on solar-blind ultraviolet imaging [J]. Chinese Journal of Lasers, 2016, 43(7): 168-177. (in Chinese)

[4] XU Z Y. Approximate performance analysis of wireless ultraviolet links[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2007: 577-580.

[5] XU Z Y, CHEN G, ABOU-GALALA F, et al.. Experimental performance evaluation of non-line-of-sight ultraviolet communication systems [J]. SPIE, 2007, 6709: 67090Y.

[6] CHEN G, ABOU-GALALA F, XU Z Y, et al.. Experimental evaluation of LED-based solar blind NLOS communication links [J]. Optics Express, 2008, 16(19): 15059-15068.

[7] ZUO Y, XIAO H F, WU J, et al.. Closed-form pathloss model of non-line-of-sight ultraviolet single-scatter propagation [J]. Optics Letters, 2013, 38(12): 2116-2118.

[8] ZHANG H L, YIN H W, JIA H H, et al.. Study of effects of obstacle on non-line-of-sight ultraviolet communication links [J]. Optics Express, 2011, 19(22): 21216-21226.

[9] 何华, 柯熙政, 赵太飞, 等. 无线“日盲”紫外光网格网中的定位研究[J]. 激光技术, 2010, 34(5): 607-610.

    HE H, KE X ZH, ZHAO T F, et al.. Research of position in the wireless “solar-blind” ultraviolet mesh network [J]. Laser Technology, 2010, 34(5): 607-610. (in Chinese)

[10] 赵太飞, 刘一杰, 王秀峰. 直升机降落引导中无线紫外光通信性能分析[J]. 激光与光电子学进展, 2016, 53(6): 93-99

    ZHAO T F, LIU Y J, WANG X F. Analysis of wireless ultraviolet communication performance in application of helicopter landing assistance [J]. Laser & Optoelectronics Progress, 2016, 53(6): 93-99. (in Chinese)

[11] 徐正平, 沈宏海, 姚园, 等. 直接测距型无扫描激光主动成像验证系统[J]. 光学 精密工程, 2016, 24(2): 251-259.

    XU ZH P, SHEN H H, YAO Y, et al.. Scannerless laser active imaging validating system by directly ranging [J]. Opt. Precision Eng., 2016, 24(2): 251-259. (in Chinese)

[12] 周俊鹏, 陈健, 李焱, 等. 舰载光电跟踪设备的目标预测算法研究[J]. 光学 精密工程, 2017, 25(2): 519-528.

    ZHOU J P, CHEN J, LI Y, et al.. Research on target prediction algorithm of shipboard photoelectric tracking equipment [J]. Opt. Precision Eng., 2017, 25(2): 519-528. (in Chinese)

[13] 宋鹏, 柯熙政, 熊扬宇, 等. 紫外光非直视非共面通信中脉冲展宽效应研究[J]. 光学学报, 2016, 36(11): 1106004.

    SONG P, KE X ZH, XIONG Y Y, et al.. Study of ultraviolet pulse broadening in non-line-of-sight communication in noncoplanar geometry [J]. Acta Optica Sinica, 2016, 36(11): 1106004. (in Chinese)

[14] WANG K, GONG C, ZOU D F, et al.. Demonstration of a 400 kbps real-time non-line-of-sight laser-based ultraviolet communication system over 500 m [J]. Chinese Optical Letters, 2017, 15(4): 040602.

[15] QIN H, ZUO Y, ZHANG D, et al.. Received response based heuristic LDPC code for short-range non-line-of-sight ultraviolet communication [J]. Optics Express, 2017, 25(5): 5018-5030.

[16] 唐义, 倪国强, 蓝天, 等. “日盲”紫外光通信系统传输距离的仿真计算[J]. 光学技术, 2007, 33(1): 27-30.

    TANG Y, NI G Q, LAN T, et al.. Simulation and evaluation of transmission distance in solar-blind UV communication systems [J]. Optical Technique, 2007, 33(1): 27-30. (in Chinese)

[17] 陈君洪, 杨小丽. 非视线“日盲”紫外通信的大气因素研究[J]. 激光杂志, 2008, 29(4): 38-39.

    CHEN J H, YANG X L. Research of the atmospheric factors of solar blind ultraviolet communication [J]. Laser Journal, 2008, 29(4): 38-39. (in Chinese)

赵太飞, 余叙叙, 包鹤, 宋鹏. 无线日盲紫外光测距定位方法[J]. 光学 精密工程, 2017, 25(9): 2324. ZHAO Tai-fei, YU Xu-xu, BAO He, SONG Peng. Ranging and positioning method using wireless solar blind ultraviolet[J]. Optics and Precision Engineering, 2017, 25(9): 2324.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!