中国激光, 2021, 48 (8): 0802014, 网络出版: 2021-04-13   

Ag-Pd纳米合金低温连接及其抗电化学迁移性能 下载: 1189次

Low-Temperature Bonding of Ag-Pd Nanoalloy and Its Resistance to Electrochemical-Migration
作者单位
清华大学机械工程系, 摩擦学国家重点实验室, 北京 100084
引用该论文

贾强, 王文淦, 阿占文, 邓钟炀, 冯斌, 刘磊. Ag-Pd纳米合金低温连接及其抗电化学迁移性能[J]. 中国激光, 2021, 48(8): 0802014.

Qiang Jia, Wengan Wang, Zhanwen A, Zhongyang Deng, Bin Feng, Lei Liu. Low-Temperature Bonding of Ag-Pd Nanoalloy and Its Resistance to Electrochemical-Migration[J]. Chinese Journal of Lasers, 2021, 48(8): 0802014.

参考文献

[1] 倪羽茜, 井红旗, 孔金霞, 等. 碳化硅封装高功率半导体激光器散热性能研究[J]. 中国激光, 2018, 45(1): 0101002.

    Ni Y X, Jing H Q, Kong J X, et al. Thermal performance of high-power laser diodes packaged by SiC ceramic submount[J]. Chinese Journal of Lasers, 2018, 45(1): 0101002.

[2] 张波, 邓小川, 张有润, 等. 宽禁带半导体SiC功率器件发展现状及展望[J]. 中国电子科学研究院学报, 2009, 4(2): 111-118.

    Zhang B, Deng X C, Zhang Y R, et al. Recent development and future perspective of silicon carbide power devices: opportunity and challenge[J]. Journal of China Academy of Electronics and Information Technology, 2009, 4(2): 111-118.

[3] Wang T, Chen X, Lu G Q, et al. Low-temperature sintering with nano-silver paste in die-attached interconnection[J]. Journal of Electronic Materials, 2007, 36(10): 1333-1340.

[4] 朱颖, 唐善平, 闫剑锋, 等. 纳米银膏与微米银膏烧结连接对比[J]. 北京航空航天大学学报, 2013, 39(4): 484-487.

    Zhu Y, Tang S P, Yan J F, et al. Comparation of the bonding through sintering between Ag nanoparticle paste and Ag microparticle paste[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 484-487.

[5] 母凤文, 邹贵生, 赵振宇, 等. 微米氧化银膏原位生成纳米银的低温烧结连接[J]. 焊接学报, 2013, 34(4): 38-42,115.

    Mu F W, Zou G S, Zhao Z Y, et al. Low temperature sintering-bonding through in situ formation of Ag nanoparticles using micro-scaled Ag2O composite paste[J]. Transactions of the China Welding Institution, 2013, 34(4): 38-42,115.

[6] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012.

[7] 梅云辉. 低温烧结纳米银焊膏电迁移和粘接热弯曲性能研究[D]. 天津: 天津大学, 2010.

    Mei YH. The investigation of low temperature sintered nanosilver paste on migration and thermal bending in die-attachment[D]. Tianjin: Tianjin University, 2010.

[8] Kim K S, Jung K H, Park B G, et al. Characterization of Ag-Pd nanocomposite paste for electrochemical migration resistance[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(11): 7620-7624.

[9] Naguib H, MacLaurin B. Silver migration and the reliability of Pd/Ag conductors in thick-film dielectric crossover structures[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1979, 2(2): 196-207.

[10] Lin J C, Chan J Y. On the resistance of silver migration in Ag-Pd conductive thick films under humid environment and applied d.c. field[J]. Materials Chemistry and Physics, 1996, 43(3): 256-265.

[11] 王迪. 高温环境下纳米Ag-Pd焊膏的抗电化学迁移老化行为研究[D]. 天津: 天津大学, 2018.

    WangD. On resistance of nano-Ag-Pd paste to electrochemical migration behavior at high temperatures[D]. Tianjin: Tianjin University, 2018.

[12] Lin J C, Wu W. On the sintering of mixed and alloyed silver-palladium powders from chemical coprecipitation[J]. Materials Chemistry and Physics, 1995, 40(2): 110-118.

[13] Buttay C, Planson D, Allard B, et al. State of the art of high temperature power electronics[J]. Materials Science and Engineering B, 2011, 176(4): 283-288.

[14] Feng B, Shen D Z, Wang W G, et al. Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16972-16980.

[15] Jia Q, Zou G S, Wang W G, et al. Sintering mechanism of a supersaturated Ag-Cu nanoalloy film for power electronic packaging[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16743-16752.

[16] Kim D H, Kim H Y, Ryu J H, et al. Phase diagram of Ag-Pd bimetallic nanoclusters by molecular dynamics simulations: solid-to-liquid transition and size-dependent behavior[J]. Physical Chemistry Chemical Physics, 2009, 11(25): 5079-5085.

[17] Karakaya I, Thompson W T. The Ag-Pd (silver-palladium) system[J]. Bulletin of Alloy Phase Diagrams, 1988, 9(3): 237-243.

[18] Ji Y T, Yang S C, Guo S W, et al. Bimetallic Ag/Au nanoparticles: a low temperature ripening strategy in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 372(1/2/3): 204-209.

[19] Anderson R, Buscall R, Eldridge R, et al. Ostwald ripening of comb polymer stabilised Ag salt nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459: 58-64.

[20] Tian Y H, Jiang Z, Wang C X, et al. Sintering mechanism of the Cu-Ag core-shell nanoparticle paste at low temperature in ambient air[J]. RSC Advances, 2016, 6(94): 91783-91790.

[21] United States Department of Defense. Test method standard: microcircuits: MUL-STD_883K[S/OL]. [2020-11-30]. http://www.everyspec.com.

贾强, 王文淦, 阿占文, 邓钟炀, 冯斌, 刘磊. Ag-Pd纳米合金低温连接及其抗电化学迁移性能[J]. 中国激光, 2021, 48(8): 0802014. Qiang Jia, Wengan Wang, Zhanwen A, Zhongyang Deng, Bin Feng, Lei Liu. Low-Temperature Bonding of Ag-Pd Nanoalloy and Its Resistance to Electrochemical-Migration[J]. Chinese Journal of Lasers, 2021, 48(8): 0802014.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!