光电工程, 2012, 39 (6): 41, 网络出版: 2012-06-25   

弹载光纤陀螺旋转惯组误差自补偿技术

Error Autocompensation of FOG-based Rotating Inertial Measurement Unit for Ballistic Missile
作者单位
第二炮兵工程大学自动控制系,西安 710025
摘要
目前弹载惯性测量组合测试标定精度受外界干扰影响较大,特别是光纤陀螺温度稳定性低,易受环境温度影响参数变化,导致误差补偿效果不好。针对该问题,提出设计一种光纤陀螺旋转惯性测量组合。在惯性测量组合外加旋转轴,在导弹飞行过程中使惯性测量组合绕旋转轴连续旋转,将射前补偿不完全误差调制为周期项,从而达到误差自补偿的效果。理论分析和仿真结果表明,通过旋转不仅能自动补偿与转轴垂直方向惯性仪表的常值误差和部分安装误差,而且能补偿加速度计部分一次项误差、二次项误差和部分交叉轴耦合项误差,选择合适的旋转方案还可以完全消除旋转速度与陀螺仪标度因数误差、安转误差的耦合误差。
Abstract
To solve the problems that the prelaunch calibration accuracy of ballistic missile is seriously influenced by external disturbance, especially the temperature stability of Fiber Optic Gyro (FOG) is so low that the parameters are changed by temperature influence and the error compensation is not satisfying, a rotating inertial measurement unit based on FOG for the missile is proposed. A rotating axis is added to the strapdown Inertial Measurement Unit (IMU), the IMU rotates around the axis, and the residual error after prelaunch compensation is modulated into periodic terms. Then, error autocompensation is realized. Through theoretical analysis and simulation, not only the constant error and part of misalignment errors of inertial instruments orthogonal to rotating axis, but the first-order, second-order and part of cross-coupling error of intersecting axis of Accelerometers can be compensated by rotating, and the coupling error between rotating speed and error of scale factor and misalignment of FOG can be eliminated completely by selecting appropriate rotating scheme.
参考文献

[1] 陆元九. 惯性器件 [M].北京:宇航出版社, 1991:1-2. LU Yuan-jiu. Inertial Sensors [M]. Beijing:Astronautic Publishing House,1991:1-2.

[2] 李家垒,何婧,许化龙 . 光纤陀螺的温度试验与误差补偿 [J].光电工程, 2009,36(12):132-137. LI Jia-lei,HE Jing,XU Hua-long. Temperature Test and Error Compensation of FOG [J]. Opto-Electronic Engineering, 2009,36(12):132-137.

[3] 毛耀,马佳光,包启亮 . 光纤陀螺时滞环节的实时补偿技术 [J].光电工程, 2009,36(2):105-109. MAO Yao,MA Jia-guang,BAO Qi-liang. Real-time Compensation Technolgy of Time Delay Unit of Fiber Optic Gyro [J]. Opto-Electronic Engineering,2009,36(2):105-109.

[4] Levinson Dr E,San Giovanni Jr. Laser Gyro Potential for Long Endurance Marine Navigation [C]// IEEE Position Location and Navigation Symposium,Piscataway, N J,1980:115-129.

[5] SUN Feng,CAO Tong,XU Bo,et al. Initial Alignment for Strapdown Inertial Navigation System Based on Inertial Frame [C]// 2009 IEEE International Conference on Mechatronics and Automation,Aug 9-12,2009:3751-3756.

[6] Yang Y,Miao L J. Fiber-Optic Strapdown Inertial System with Sensing Cluster Continuous Rotation [J]. IEEE Transactions on Aerospace and Electronic Systems,2004,40(4):1173-1178.

[7] ZHAO Lin,WANG Xin-zhe,HUANG Chen,et al. The Research on Rotation Self-Compensation Scheme of Strapdown Inertial System [C]// 2009 IEEE International Conference on Mechatronics and Automation,Aug 9-12,2009:4760-4764.

[8] 索玉龙,纪志农,王玉辉 . 捷联惯测组合旋转机构的研究 [J].战术导弹控制技术, 2006,52(1):45-51. SUO Yu-long,JI Zhi-nong,WANG Yu-hui. Research on the Revolving Apparatus of Strapdown Inertial Measurement [J]. Control Technology of Tactical Missile,2006,52(1):45-51.

[9] 袁保伦. 四频激光陀螺旋转式惯导系统研究 [D].长沙:国防科学技术大学, 2007. YUAN Bao-lun. Research on Rotating Inertial Navigation System with Four-frequency Differential Laser Gyroscope [D]. Changsha:National University of Defense Technology,2007.

[10] 秦永元. 惯性导航 [M].北京:科学出版社, 2007:355-361.

刘洁瑜, 杨建业, 汪立新, 蔚国强. 弹载光纤陀螺旋转惯组误差自补偿技术[J]. 光电工程, 2012, 39(6): 41. LIU Jie-yu, YANG Jian-ye, WANG Li-xin, YU Guo-qiang. Error Autocompensation of FOG-based Rotating Inertial Measurement Unit for Ballistic Missile[J]. Opto-Electronic Engineering, 2012, 39(6): 41.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!