发光学报, 2014, 35 (6): 701, 网络出版: 2014-06-10   

紫外发光增强的石墨烯-氧化锌纳米复合物

Enhanced Ultraviolet Photoluminescence of Graphene-ZnO Nanocomposites
作者单位
1 江苏大学 江苏省重点实验室光子制造科学与技术中心, 江苏 镇江212013
2 东南大学 生物电子学国家重点实验室, 江苏 南京210096
引用该论文

吴春霞, 张双鸽, 何自娟, 刘栋, 李金榜, 张海君. 紫外发光增强的石墨烯-氧化锌纳米复合物[J]. 发光学报, 2014, 35(6): 701.

WU Chun-xia, ZHANG Shuang-ge, HE Zi-juan, LIU Dong, LI Jin-bang, ZHANG Hai-jun. Enhanced Ultraviolet Photoluminescence of Graphene-ZnO Nanocomposites[J]. Chinese Journal of Luminescence, 2014, 35(6): 701.

参考文献

[1] Su S C, Lv Y M, Zhang J Y, et al. Sbustrates temperature influence on the structural and optical properties of ZnO films [J]. J. Lumin., 2011, 32(7):736-739.

[2] Pan Y W. Synthesis and photoluminescence properties of zinc oxide nanostructures [J]. J. Lumin., 2013, 34(8):994-999.

[3] Deenathayalan J, Saroja M, Venkatachalam M, et al. Optical and structural properties of ZnO nanorods prepared by chemical bath deposition method [J]. Adv. Mater. Res., 2013, 678:207-211.

[4] Novoselov K S A, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438(7065):197-200.

[5] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene [J]. Rev. Modern Phys., 2009, 81(1):109-1-24.

[6] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials [J]. Nature, 2006, 442(7100):282-286.

[7] Yi J, Lee J M, Park W I. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors [J]. Sens. Actuat. B: Chem., 2011, 155(1):264-269.

[8] Yang Y, Ren L, Zhang C, et al. Facile fabrication of functionalized graphene sheets (FGS)/ZnO nanocomposites with photocatalytic property [J]. ACS Appl. Mater. Interf., 2011, 3(7):2779-2785.

[9] Liu X, Pan L, Zhao Q, et al. UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr (Ⅵ) [J]. Chem. Eng. J., 2012, 183:238-243.

[10] Zheng W T, Ho Y M, Tian H W, et al. Field emission from a composite of graphene sheets and ZnO nanowires [J]. J. Phys. Chem. C, 2009, 113(21):9164-9168.

[11] Hwang J O, Lee D H, Kim J Y, et al. Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission [J]. J. Mater. Chem., 2011, 21(10):3432-3437.

[12] Yang Y, Liu T. Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid [J]. Appl. Surf. Sci., 2011, 257(21):8950-8954.

[13] Liu R, Fu X W, Meng J, et al. Graphene plasmon enhanced photoluminescence in ZnO microwires [J]. Nanoscale, 2013, 5(12):5294-5298.

[14] Hwang S W, Shin D H, Kim C O, et al. Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films [J]. Phys. Rev. Lett., 2010, 105(12):127403-1-4.

[15] Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80(6):1339-1339.

[16] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers [J]. Phys. Rev. Lett., 2006, 97(18):187401-1-4.

[17] Fu Z D, Cui Y S, Zhang S Y, et al. Study on the quantum confinement effect on ultraviolet photoluminescence of crystalline ZnO nanoparticles with nearly uniform size [J]. Appl. Phys. Lett., 2007, 90(26):263113-1-3.

[18] Schmidt T, Lischka K, Zulehner W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors [J]. Phys. Rev. B, 1992, 45(16):8989-8994.

吴春霞, 张双鸽, 何自娟, 刘栋, 李金榜, 张海君. 紫外发光增强的石墨烯-氧化锌纳米复合物[J]. 发光学报, 2014, 35(6): 701. WU Chun-xia, ZHANG Shuang-ge, HE Zi-juan, LIU Dong, LI Jin-bang, ZHANG Hai-jun. Enhanced Ultraviolet Photoluminescence of Graphene-ZnO Nanocomposites[J]. Chinese Journal of Luminescence, 2014, 35(6): 701.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!