Photonics Research, 2020, 8 (4): 04000539, Published Online: Mar. 30, 2020   

Wide-field ophthalmic space-division multiplexing optical coherence tomography Download: 525次

Author Affiliations
1 Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
2 Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
3 Scheie Eye Institute, Penn Presbyterian Medical Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
4 Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
Copy Citation Text

Jason Jerwick, Yongyang Huang, Zhao Dong, Adrienne Slaudades, Alexander J. Brucker, Chao Zhou. Wide-field ophthalmic space-division multiplexing optical coherence tomography[J]. Photonics Research, 2020, 8(4): 04000539.

References

[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito. Optical coherence tomography. Science, 1991, 254: 1178-1181.

[2] J. Fujimoto, E. Swanson. The development, commercialization, and impact of optical coherence tomography. Invest. Ophthalmol. Vis. Sci., 2016, 57: OCT1-OCT13.

[3] L. M. Sakata, J. DeLeon-Ortega, V. Sakata, C. A. Girkin. Optical coherence tomography of the retina and optic nerve—a review. Clin. Exp. Ophthalmol., 2009, 37: 90-99.

[4] M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, J. G. Fujimoto. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology, 1996, 103: 1260-1270.

[5] M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, J. G. Fujimoto. Quantitative assessment of macular edema with optical coherence tomography. JAMA Ophthalmol., 1995, 113: 1019-1029.

[6] A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, A. Yoshida. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am. J. Ophthalmol., 2015, 160: 35-44.

[7] H. Hirakawa, H. Iijima, T. Gohdo, S. Tsukahara. Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa. Am. J. Ophthalmol., 1999, 128: 185-191.

[8] A. Nagiel, R. A. Lalane, S. R. Sadda, S. D. Schwartz. Ultra-widefield fundus imaging: a review of clinical applications and future trends. Retina, 2016, 36: 660-678.

[9] V. Manjunath, V. Papastavrou, D. H. W. Steel, G. Menon, R. Taylor, T. Peto, J. Talks. Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening. Eye, 2015, 29: 416.

[10] E. A. T. Say, S. Ferenczy, G. N. Magrath, W. A. Samara, C. T. L. Khoo, C. L. Shields. Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque radiotherapy. Retina, 2017, 37: 1660-1673.

[11] S. H. Yun, G. J. Tearney, J. F. de Boer, B. E. Bouma. Motion artifacts in optical coherence tomography with frequency-domain ranging. Opt. Express, 2004, 12: 2977-2998.

[12] R. F. Spaide, J. G. Fujimoto, N. K. Waheed. Image artifacts in optical coherence tomography angiography. Retina, 2015, 35: 2163-2180.

[13] K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, A. Roorda. Real-time eye motion compensation for OCT imaging with tracking SLO. Biomed. Opt. Express, 2012, 3: 2950-2963.

[14] T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, R. Huber. Multi-MHz retinal OCT. Biomed. Opt. Express, 2013, 4: 1890-1908.

[15] J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, R. Huber. Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates. PLoS ONE, 2019, 14: e0213144.

[16] J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, R. Huber. Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle. Biomed. Opt. Express, 2015, 6: 1534-1552.

[17] M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, B. J. Vakoc. High-speed optical coherence tomography by circular interferometric ranging. Nat. Photonics, 2018, 12: 111-116.

[18] I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, J. G. Fujimoto. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers. Biomed. Opt. Express, 2012, 3: 2733-2751.

[19] D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, R. A. Leitgeb. Line-field parallel swept source MHz OCT for structural and functional retinal imaging. Biomed. Opt. Express, 2015, 6: 716-735.

[20] S. K. Dubey, T. Anna, C. Shakher, D. S. Mehta. Fingerprint detection using full-field swept-source optical coherence tomography. Appl. Phys. Lett., 2007, 91: 181106.

[21] M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izatt. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express, 2003, 11: 2183-2189.

[22] C. Zhou, A. Alex, J. Rasakanthan, Y. Ma. Space-division multiplexing optical coherence tomography. Opt. Express, 2013, 21: 19219-19227.

[23] B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, A. E. Cable. MEMS tunable VCSEL light source for ultrahigh speed 60kHz–1MHz axial scan rate and long range centimeter class OCT imaging. Proc. SPIE, 2012, 8213: 82130M.

[24] B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, I. A. Vitkin. In vivo endoscopic multi-beam optical coherence tomography. Phys. Med. Biol., 2010, 55: 615-622.

[25] R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, C. K. Hitzenberger. Total retinal blood flow measurement by three beam Doppler optical coherence tomography. Biomed. Opt. Express, 2016, 7: 287-301.

[26] S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, C. K. Hitzenberger. Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography. Opt. Express, 2011, 19: 1217-1227.

[27] N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, N. Yoshimura. Three-beam spectral-domain optical coherence tomography for retinal imaging. J. Biomed. Opt., 2012, 17: 106001.

[28] H. Y. Lee, H. Sudkamp, T. Marvdashti, A. K. Ellerbee. Interleaved optical coherence tomography. Opt. Express, 2013, 21: 26542-26556.

[29] Y. Huang, M. Badar, A. Nitkowski, A. Weinroth, N. Tansu, C. Zhou. Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device. Biomed. Opt. Express, 2017, 8: 3856-3867.

[30] R. K. Manapuram, V. G. R. Manne, K. V. Larin. Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles. Laser Phys., 2008, 18: 1080-1086.

[31] A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, T. Lasser. Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography. Opt. Express, 2001, 9: 610-615.

[32] Laser Institute of America, “American national standard for safe use of lasers in health care,” ANSI Z136.3-2018 (2018).

[33] VokeJ., “Radiation effects on the eye: Part 3b—Ocular effects of ultraviolet radiation,” Optometry Today (July30, 1999), 3740.

[34] M. Guizar-Sicairos, S. T. Thurman, J. R. Fienup. Efficient subpixel image registration algorithms. Opt. Lett., 2008, 33: 156-158.

[35] S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, S. Farsiu. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Express, 2010, 18: 19413-19428.

[36] R. F. Spaide, J. M. Klancnik, M. J. Cooney. Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography. JAMA Ophthalmol., 2015, 133: 66-73.

Jason Jerwick, Yongyang Huang, Zhao Dong, Adrienne Slaudades, Alexander J. Brucker, Chao Zhou. Wide-field ophthalmic space-division multiplexing optical coherence tomography[J]. Photonics Research, 2020, 8(4): 04000539.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!