红外与激光工程, 2019, 48 (9): 0904001, 网络出版: 2019-10-12   

星上红外遥感相机的辐射定标技术发展综述

Review of on-orbit radiometric calibration technology used in infrared remote sensors
作者单位
1 北京理工大学 光电学院 光电成像技术与系统教育部重点实验室,北京 100081
2 北京空间机电研究所,北京 100094
摘要
随着对天基对地以及临近空间目标探测的需求增大,高性能红外相机探测及海量数据定量化迫切需要高可靠性、高精度的辐射定标技术,因此,星上辐射定标装置已成为当前空间定量遥感技术发展的重要方向。在轨红外遥感相机的辐射定标主要校正探测器响应的不均匀性(相对辐射定标)和建立遥感相机输出信号与输入辐射量的函数关系(绝对辐射定标)。在介绍红外相机星上辐射定标基本原理的基础上,综述近年来几个国内外典型星上辐射定标装置及其特点,并介绍笔者所在课题组近年来基于内部定标源+天空星图的红外相机高动态范围(HDR)相对辐射定标方法的研究进展。论文对于红外辐射定标技术及星上辐射定标装置的发展具有参考意义。
Abstract
With the growing demand of quantitative remote sensing and near-space target detection technology, the radiometric calibration technology with high reliability and high accuracy, the on-orbit radiometric calibration device has become an essential orientation in quantitative remote sensing. The on-orbit radiometric calibration of an infrared remote sensing system includes non-uniformity correction(relative radiometric calibration) and absolute radiometric calibration. Absolute radiometric calibration is defined in terms of a sensor′s response on a physical, real-world scale, measured in internationally defined units. Based on the introduction of the basic calibration principles, the latest development in infrared on-orbit radiometric calibration devices was reviewed and the technical features of the radiometric calibration method was analyzed. Furthermore, our recent research progress was introduced based on internal calibration sources and combined with starring image in high dynamic range(HDR) relative radiometric calibration methods was introduced. The research promotes the development of infrared on-orbit radiometric calibration devices and technology.
参考文献

[1] 刘李, 顾行发, 余涛, 等. HJ-1B卫星热红外通道在轨场地定标与验证[J]. 红外与激光工程, 2012, 41(5): 1119-1125.

    Liu Li, Gu Xingfa, Yu Tao, et al. HJ-1B thermal infrared band in-flight radiometric calibration and validation [J]. Infrared and Laser Engineering, 2012, 41(5): 1119-1125. (in Chinese)

[2] 孙珂, 傅俏燕, 亓学勇. HJ-1B卫星IRS传感器热红外通道交叉定标 [J]. 红外与激光工程, 2010, 39(5): 785-790.

    Sun Ke, Fu Qiaoyan, Qi Xueyong. Radiometric cross-calibration of thermal infrared channel of IRS sensor on HJ-1B satellite[J]. Infrared and Laser Engineering, 2010, 39(5): 785-790. (in Chinese)

[3] 龙亮, 王世涛, 周峰, 等. 空间红外点目标遥感探测系统在轨辐射定标 [J]. 航天返回与遥感, 2012, 33(2): 73-80.

    Long Liang, Wang Shitao, Zhou Feng, et al. In-orbit radiometric calibration methods for remote sensing system to detect space infrared point target [J]. Spacecraft Recovery & Remote Sensing, 2012, 33(2): 73-80. (in Chinese)

[4] 张伟, 谢蓄芬, 王付刚, 等. 变积分时间的空间红外相机单点绝对辐射定标法 [J]. 红外与激光工程, 2012, 41(8): 2090-2095.

    Zhang Wei, Xie Xufen, Wang Fugang, et al. Single-point absolute radiometric calibration for space infrared camera by changing integration time[J]. Infrared and Laser Engineering, 2012, 41(8): 2090-2095. (in Chinese)

[5] Tansock J, Bancroft D, Butler J, et al. Guidelines for radiometric calibration of electro-optical instruments for remote sensing[R]. NIST.HB.157, USA, 2015.

[6] Xiong X, Chiang K, Esposito J, et al. MODIS on-orbit calibration and characterization [J]. Metrologia, 2003, 40(1): S89.

[7] Xiong X, Angal A, Barnes W L, et al. Updates of Moderate Resolution Imaging Spectroradiometer on-orbit calibration uncertainty assessments [J]. Journal of Applied Remote Sensing, 2018, 12(3): 18.

[8] Xiong X, Barnes W. An overview of MODIS radiometric calibration and characterization [J]. Advances in Atmospheric Sciences, 2006, 23(1): 69-79.

[9] Xiong X, Sun J, Barnes W, et al. Multiyear on-orbit calibration and performance of Terra MODIS reflective solar bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4): 879-889.

[10] Xiong X, Chiang K, Sun J, et al. NASA EOS Terra and Aqua MODIS on-orbit performance [J]. Advances in Space Research, 2009, 43(3): 413-422.

[11] Schott J R, Hook S J, Barsi J A, et al. Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982-2010) [J]. Remote Sensing of Environment, 2012, 122: 41-49.

[12] Jhabvala M, Reuter D, Choi K, et al. QWIP-based thermal infrared sensor for the landsat data continuity mission [J]. Infrared Physics & Technology, 2009, 52(6): 424-429.

[13] Thome K, Lunsford A, Montanaro M, et al. Calibration plan for the Thermal Infrared Sensor on the Landsat Data Continuity Mission [C]//SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, 2011: 804813-804819.

[14] Montanaro M, Lunsford A, Tesfaye Z, et al. Radiometric calibration methodology of the landsat 8 thermal infrared sensor [J]. Remote Sensing, 2014, 6(9): 8803-8821.

[15] Barsi J, Schott J, Hook S, et al. Landsat-8 Thermal infrared sensor (TIRS) vicarious radiometric calibration [J]. Remote Sensing, 2014, 6(11): 11607-11626.

[16] Knight E, Kvaran G. Landsat-8 operational land imager design, characterization and performance [J]. Remote Sensing, 2014, 6(11): 10286-10305.

[17] Montanaro M, Levy R, Markham B. On-orbit radiometric performance of the landsat 8 thermalInfrared sensor [J]. Remote Sensing, 2014, 6(12): 11753-11769.

[18] Barsi J, Lee K, Kvaran G, et al. The spectral response of the landsat-8 operational land imager [J]. Remote Sensing, 2014, 6(10): 10232-10251.

[19] Montanaro M, Gerace A, Lunsford A, et al. Stray light artifacts in imagery from the landsat 8 thermal infrared sensor [J]. Remote Sensing, 2014, 6(11): 10435-10456.

[20] Gerace A, Montanaro M, Connal R. Leveraging intercalibration techniques to support stray-light removal from Landsat 8 thermal infrared sensor data [J]. Journal of Applied Remote Sensing, 2017, 12(1): 13.

[21] Reuter D, Irons J, Lunsford A, et al. The operational land imager (OLI) and the thermal infrared sensor (TIRS) on the Landsat data continuity mission (LDCM) [C]//SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, 2011: 804812-804817.

[22] Irons J R, Dwyer J L, Barsi J A. The next Landsat satellite: The Landsat data continuity mission [J]. Remote Sensing of Environment, 2012, 122: 11-21.

[23] Kintner E C, Jacobs E S, Hartley J M, et al. Infrared internal calibration sources developed at SSGPO, Inc [C]// Optical Science and Technology, SPIE′s 48th Annual Meeting, 2003: International Society for Optics and Photonics, 2003, 5152: 42-50.

[24] Kintner E C, Hartley J M, Jacobs E S, et al. Advanced development of internal calibration sources for remote sensing telescopes [C]//Optical Science and Technology, the SPIE 49th Annual Meeting, 2004: International Society for Optics and Photonics, 2004, 5543: 313-319.

[25] Smith W, Harrison F, Hinton D, et al. The geosynchronous imaging Fourier transform spectrometer (GIFTS) [C]// Conference on Satellite Meteorology and Oceanography, 2001: 391-398.

[26] Zhou D K, Smith W L, Bingham G E, et al. Ground-based measurements with the Geosynchronous Imaging Fourier Transform Spectrometer(GIFTS) engineering demonstration unit-experiment description and first results [J]. Journal of Applied Remote Sensing, 2007, 1(1): 13528-13514.

[27] Kintner E C, Wong W K, Jacobs E S, et al. Efficient and versatile internal reference sources for remote sensing space telescopes [C]//Proceedings-SPIE the International Society for Optical Engineering, 2006: International Society for Optical Engineering, 2006, 6297: 62970F.

[28] Paxton L J, Meng C-I, Anderson D E, et al. MSX-A multiuse space experiment [J]. Johns Hopkins APL Technical Digest, 1996, 17(1): 19-34.

[29] Mill J D, O'Neil R R, Price S, et al. Midcourse space experiment: introduction to the spacecraft, instruments, and scientific objectives [J]. Journal of Spacecraft and Rockets, 1994, 31(5): 900-907.

[30] Bartschi B Y, Morse D E, Woolston T L. The spatial infrared imaging telescope III [J]. Johns Hopkins APL Technical Digest, 1996, 17(2): 215-225.

[31] Huebschman R K. The MSX spacecraft system design [J]. Johns Hopkins APL Technical Digest, 1996, 17(1): 41-48.

[32] Egan M, Price S, Moshir M, et al. The midcourse space experiment point source catalog version 1.2 explanatory guide[R]. DTIC Document, USA, 1999.

[33] Burdick S V, Morris D C. SPIRIT III calibration stars: inband irradiance and uncertainty [J]. Optical Engineering, 1997, 36(11): 2971-2976.

[34] Price S D, Egan M P, Carey S J, et al. Midcourse space experiment survey of the Galactic Plane [J]. The Astronomical Journal, 2001, 121(5): 2819.

[35] Burdick S V, Chalupa J, Hamilton C L, et al. MSX reference objects [J]. Johns Hopkins APL Technical Digest, 1996, 17(2): 247.

[36] Mill J D, Guilmain B D. The MSX mission objectives [J]. Johns Hopkins APL Technical Digest, 1996, 17(1): 5.

[37] 张勇. 遥感传感器热红外数据辐射定标研究 [D]. 北京: 中国科学院遥感应用研究所, 2006: 60-64.

    Zhang Yong. Study on thermal infrared remote sensors′ absolutely radiometric calibrations [D]. Beijing: Institute of Remote Sensing Applications Chinese Academy of Sciences, 2006: 60-64. (in Chinese)

[38] Sheng Y, Jin W, Dun X, et al. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors [C]//Applied Optics and Photonics China (AOPC2017), 2017.

[39] Sheng Y, Dun X, Jin W, et al. The on-orbit non-uniformity correction method with modulated internal calibration sources for infrared remote sensing systems [J]. Remote Sensing, 2018, 10(6): 830.

[40] Wielicki B A, Young D, Mlynczak M, et al. Achieving climate change absolute accuracy in orbit [J]. Bulletin of the American Meteorological Society, 2013, 94(10): 1519-1539.

盛一成, 顿雄, 金伟其, 郭一新, 周峰, 肖思. 星上红外遥感相机的辐射定标技术发展综述[J]. 红外与激光工程, 2019, 48(9): 0904001. Sheng Yicheng, Dun Xiong, Jin Weiqi, Guo Yixin, Zhou Feng, Xiao Si. Review of on-orbit radiometric calibration technology used in infrared remote sensors[J]. Infrared and Laser Engineering, 2019, 48(9): 0904001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!