中国激光, 2017, 44 (6): 0602002, 网络出版: 2017-06-08   

曲面基底衍射光学元件的激光直写技术 下载: 552次

Laser Direct Writing Technique of Diffraction Optical Element on Curved-Surface Substrate
作者单位
1 吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
2 西安交通大学机械工程学院, 陕西 西安 710049
摘要
飞秒激光直写技术(FsLDW)因其优异的三维加工能力、高空间分辨率、低附加损伤等优点被广泛地应用于微纳加工领域, 但传统飞秒激光直写技术在加工效率、加工面积和加工精度之间存在矛盾。为了实现高速、大面积、高精度的激光微纳加工, 构建了一种由大范围水平位移台和高速旋转台组成的极坐标系飞秒激光直写系统。基于该系统, 研究了轴对称样品中心对准方法及曲面曲率校准方法, 并在曲面上制备了多阶三维结构。最终完成了在透镜曲面上制备直径为10 mm的衍射圆光栅结构, 实现了飞秒激光高速、大尺寸、高精度地制备大面积三维结构。该研究为高性能折衍混合光学元件的制备提供了有力的技术支持。
Abstract
Femtosecond laser direct writing (FsLDW) has been widely applied in the field of mico-nano fabrication for its advantages such as excellent three-dimensional processing ability, high spatial resolution and low additional damage. However, there are contradictions between machining efficiency, machining area and machining accuracy in the conventional FsLDW. In order to realize high speed, large area and high precision in the process of laser micro-nano fabrication, we have built a new FsLDW system based on polar coordinates, which is composed of large scale horizontal linear stages and high speed rotary stage. The approaches for the alignment of axisymmetric sample′s center and the calibration of surface curvature have been investigated based on the proposed system, and a multilevel three-dimensional structure has been fabricated on a curved surface. Finally, a diffractive circle grating structure with diameter of 10 mm has been fabricated on curved surface of the lens, and the femtosecond laser fabrication of large area three-dimensional structure with high speed, large scale and high precision has been realized. The research provides strong technical support for the fabrication of high performance hybrid refractive-diffractive optical element.
参考文献

[1] Smith J G, Ramosizquierdo L, Stockham A. Diffractive optics for moon topography mapping[C]. SPIE, 2006, 6223: 622304.

[2] 孙艳军, 冷雁冰, 董连和. 蓝宝石红外窗口抗反射浮雕结构研究[J]. 红外技术, 2011, 33(2): 92-95.

    Sun Yanjun, Leng Yanbing, Dong Lianhe. Study on antireflective relief periodic structure of sapphire infrared window[J]. Infrared Technology, 2011, 33(2): 92-95.

[3] 刘 博, 李 松. 二元光学元件在星载激光测高仪中的应用[J]. 光电子·激光, 2003, 14(1): 102-104.

    Liu Bo,Li Song. Application of binary optical element in satellite laser altimeters[J]. Journal of Optoelectronics·Laser, 2003, 14(1): 102-104.

[4] 赵 翔, 张 鹏, 罗金平. 双层衍射光学元件在微光夜视物镜中的应用[J]. 激光与光电子学进展, 2016, 53(11): 112203.

    Zhao Xiang, Zhang Peng, Luo Jinping. Application of low-light night-vision objective lens with double-layer diffractive optical element[J]. Laser & Optoelectronics Progress, 2016, 53(11): 112203.

[5] 梁 旭, 王军华, 徐 敏, 等. 折-衍光学镜片的单点金刚石车削与检测[J]. 激光与光电子学进展, 2011, 48(3): 032203.

    Liang Xu, Wang Junhua, Xu Min, et al. Single-point diamond turning and testing of hybrid diffractive-refractive optical lens[J]. Laser & Optoelectronics Progress, 2011, 48(3): 032203.

[6] Feldman M R, Suleski T J, Delaney W F. Fabricating optical elements using a photoresist formed from contact printing of a gray level mask: US6071652[P]. 2000-06-06.

[7] Zha Y K, Wei J S, Gan F X. A novel design for maskless direct laser writing nanolithography: Combination of diffractive optical element and nonlinear absorption inorganic resists[J]. Opt Commun, 2013, 304(1): 49-53.

[8] Shan M, Tan J. Modeling focusing characteristics of low F-number diffractive optical elements with continuous relief fabricated by laser direct writing[J]. Opt Express, 2007, 15(25): 17032.

[9] Tapalian H C, Langseth J, Chen Y, et al. Ultrafast laser direct-write actuable microstructures[J]. Appl Phys Lett, 2008, 93(24): 243304.

[10] Zeng H, Martella D, Wasylczyk P, et al. Liquid-crystalline elastomers: high-resolution 3D direct laser writing for liquid-crystalline elastomer microstructures[J]. Adv Mater, 2014, 26(15): 2285.

[11] 何 飞, 程 亚. 飞秒激光微加工:激光精密加工领域的新前沿[J]. 中国激光, 2007, 34(5): 595-622.

    He Fei, Cheng Ya. Femtosecond laser micromachining: frontier in laser precision micromachining[J]. Chinese J Lasers, 2007. 34(5): 595-622.

[12] Hu A, Peng P, Alarifi H, et al. Femtosecond laser welded nanostructures and plasmonic devices[J]. J Laser Appl, 2012, 24(4): 241-247.

[13] Zheng C, Hu A M, Chen T, et al. Femtosecond laser internal manufacturing of three-dimensional microstructure devices[J]. Appl Phys A-Mater, 2015, 121(1): 163-177.

[14] Liu C M. Compact 3D microfluidic channel structures embedded in glass fabricated by femtosecond laser direct writing[J]. J Laser Micro/Nanoengineering, 2013, 8(2): 170-174.

[15] Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 2010, 5(5): 435-448.

[16] 刘 爽, 刘 欣, 唐文龙, 等. 飞秒激光在钛蓝宝石晶体中刻写双线型波导的研究[J]. 中国激光, 2015, 42(2): 0203001.

    Liu Shuang, Liu Xin, Tang Wenlong, et al. Study of Ti: sapphire double line waveguide written by femtosecond laser[J]. Chinese J Lasers, 2015, 42(2): 0203001.

[17] 邢松龄, 刘 磊, 邹贵生, 等. 飞秒激光参数对石英玻璃微孔加工的影响[J]. 中国激光, 2015, 42(4): 0403001.

    Xing Songling, Liu Lei, Zou Guisheng, et al. Effects of femtosecond laser parameters on hole drilling of silica glass[J]. Chinese J Lasers, 2015, 42(4): 0403001.

[18] Mizoshiri M, Arakane S, Sakurai J, et al. Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles[J]. Appl Phys Express, 2016, 9(3): 036701.

[19] Zhang H T, Tang M Z, McCoy J, et al. Deposition of tungsten nanogratings induced by a single femtosecond laser beam[J]. Opt Express, 2007, 15(10): 5937-5947.

[20] Wang H, Liu S, Zhang Y L, et al. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing[J]. Sci Technol Adv Mater, 2015, 16(2): 024805.

[21] Ma Y C, Wang L, Guan K M, et al. Silicon-based suspended structure fabricated by femtosecond laser direct writing and wet etching[J]. IEEE Photonic Tech L, 2016, 28(15): 1605-1608.

[22] Sohn I B, Ko M J, Kim Y S, et al. Direct femtosecond laser lithography for photoresist patterning[J]. Opt Eng, 2009, 48(2): 024301.

[23] Ho S, Haque M, Herman P R, et al. Femtosecond laser-assisted etching of three-dimensional inverted-woodpile structures in fused silica[J]. Opt Lett, 2012, 37(10): 1682-1684.

[24] Kallepalli L N, Desai N R, Rao S V. Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices[J]. Opt Eng, 2012, 51(7): 397-407.

[25] Kumi G, Yanez C O, Belfield K D, et al. High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios[J]. Lab Chip, 2010, 10(8): 1057-1060.

姜俊, 刘晋桥, 徐颖, 于颜豪. 曲面基底衍射光学元件的激光直写技术[J]. 中国激光, 2017, 44(6): 0602002. Jiang Jun, Liu Jinqiao, Xu Ying, Yu Yanhao. Laser Direct Writing Technique of Diffraction Optical Element on Curved-Surface Substrate[J]. Chinese Journal of Lasers, 2017, 44(6): 0602002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!